首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The FDA's process analytical technology initiative encourages drug manufacturers to apply innovative ideas to better understand their processes. There are many challenges to applying these techniques to monitor mammalian cell culture bioreactors for biologics manufacturing. These include the ability to monitor multiple components in complex medium formulations non-invasively and in-line. We report results that demonstrate, for the first time, the technical feasibility of the in-line application of Raman spectroscopy for monitoring a mammalian cell culture bioreactor. A Raman probe was used for the simultaneous prediction of culture parameters including glutamine, glutamate, glucose, lactate, ammonium, viable cell density, and total cell density.  相似文献   

2.
Process control in cell culture technology using dielectric spectroscopy   总被引:1,自引:0,他引:1  
In the biopharmaceutical industry, mammalian and insect cells as well as plant cell cultures are gaining worldwide importance to produce biopharmaceuticals and as products themselves, for example in stem cell therapy. These highly sophisticated cell-based production processes need to be monitored and controlled to guarantee product quality and to satisfy GMP requirements. With the process analytical technology (PAT) initiative, requirements regarding process monitoring and control have changed and real-time in-line monitoring tools are now recommended. Dielectric spectroscopy (DS) can serve as a tool to satisfy some PAT requirements. DS has been used in the medical field for quite some time and it may allow real-time process monitoring of biological cell culture parameters. DS has the potential to enable process optimization, automation, cost reduction, and a more consistent product quality. Dielectric spectroscopy is reviewed here as a tool to monitor biochemical processes. Commercially available dielectric sensing systems are discussed. The potential of this technology is demonstrated through examples of current and potential future applications in research and industry for mammalian and insect cell culture.  相似文献   

3.
Current manufacturing and development processes for therapeutic monoclonal antibodies demand increasing volumes of analytical testing for both real-time process controls and high-throughput process development. The feasibility of using Raman spectroscopy as an in-line product quality measuring tool has been recently demonstrated and promises to relieve this analytical bottleneck. Here, we resolve time-consuming calibration process that requires fractionation and preparative experiments covering variations of product quality attributes (PQAs) by engineering an automation system capable of collecting Raman spectra on the order of hundreds of calibration points from two to three stock seed solutions differing in protein concentration and aggregate level using controlled mixing. We used this automated system to calibrate multi-PQA models that accurately measured product concentration and aggregation every 9.3 s using an in-line flow-cell. We demonstrate the application of a nonlinear calibration model for monitoring product quality in real-time during a biopharmaceutical purification process intended for clinical and commercial manufacturing. These results demonstrate potential feasibility to implement quality monitoring during GGMP manufacturing as well as to increase chemistry, manufacturing, and controls understanding during process development, ultimately leading to more robust and controlled manufacturing processes.  相似文献   

4.
Protein A chromatography is widely employed for the capture and purification of antibodies and Fc‐fusion proteins. Due to the high cost of protein A resins, there is a significant economic driving force for using these chromatographic materials for a large number of cycles. The maintenance of column performance over the resin lifetime is also a significant concern in large‐scale manufacturing. In this work, several statistical methods are employed to develop a novel principal component analysis (PCA)‐based tool for predicting protein A chromatographic column performance over time. A method is developed to carry out detection of column integrity failures before their occurrence without the need for a separate integrity test. In addition, analysis of various transitions in the chromatograms was also employed to develop PCA‐based models to predict both subtle and general trends in real‐time protein A column yield decay. The developed approach has significant potential for facilitating timely and improved decisions in large‐scale chromatographic operations in line with the process analytical technology (PAT) guidance from the Food and Drug Administration (FDA). Biotechnol. Bioeng. 2011; 108:59–68. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Multi‐component, multi‐scale Raman spectroscopy modeling results from a monoclonal antibody producing CHO cell culture process including data from two development scales (3 L, 200 L) and a clinical manufacturing scale environment (2,000 L) are presented. Multivariate analysis principles are a critical component to partial least squares (PLS) modeling but can quickly turn into an overly iterative process, thus a simplified protocol is proposed for addressing necessary steps including spectral preprocessing, spectral region selection, and outlier removal to create models exclusively from cell culture process data without the inclusion of spectral data from chemically defined nutrient solutions or targeted component spiking studies. An array of single‐scale and combination‐scale modeling iterations were generated to evaluate technology capabilities and model scalability. Analysis of prediction errors across models suggests that glucose, lactate, and osmolality are well modeled. Model strength was confirmed via predictive validation and by examining performance similarity across single‐scale and combination‐scale models. Additionally, accurate predictive models were attained in most cases for viable cell density and total cell density; however, these components exhibited some scale‐dependencies that hindered model quality in cross‐scale predictions where only development data was used in calibration. Glutamate and ammonium models were also able to achieve accurate predictions in most cases. However, there are differences in the absolute concentration ranges of these components across the datasets of individual bioreactor scales. Thus, glutamate and ammonium PLS models were forced to extrapolate in cases where models were derived from small scale data only but used in cross‐scale applications predicting against manufacturing scale batches. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:566–577, 2015  相似文献   

6.
 Two-dimensional fluorescence spectroscopy (2D-FS) has been used as a new method for determining the viability of tobacco cells (Nicotiana tabacum L.). Both horizontal beam geometry and a vertical set-up achieved with bifurcated fibres were tested. The latter arrangement enabled us to avoid the negative effect of cell sedimentation. Incubation of a tobacco BY-2 cell suspension with dimethylsulfoxide (DMSO) (0–10% v/v) resulted in cell samples differing in their viability – from fully viable (0–2% DMSO) to totally non-viable (8–10%DMSO). The validity of determining viability by means of measuring cell esterase activity by 2D-FS using fluorescein diacetate as a fluorogenic substrate was verified by comparison with microscopic evaluation of fluorescein fluorescence as well as with the routinely adopted trypan blue exclusion test. Received: 6 June 2000 / Revision received: 9 October 2000 / Accepted: 9 October 2000  相似文献   

7.
This article is the second of a series of articles detailing the development of near-infrared (NIR) methods for solid dosage-form analysis. Experiments were conducted at the Duquesne University Center for Pharmaceutical Technology to demonstrate a method for developing and validating NIR models for the analysis of active pharmaceutical ingredient (API) content and hardness of a solid dosage form. Robustness and cross-validation testing were used to optimize the API content and hardness models. For the API content calibration, the optimal model was determined as multiplicative scatter correction with Savitsky-Golay first-derivative preprocessing followed by partial least-squares (PLS) regression including 4 latent variables. API content calibration achieved root mean squared error (RMSE) and root mean square error of cross validation (RMSECV) of 1.48 and 1.80 mg, respectively. PLS regression and baseline-fit calibration models were compared for the prediction of tablet hardness. Based on robustness testing, PLS regression was selected for the final hardness model, with RMSE and RMSECV of 8.1 and 8.8 N, respectively. Validation testing indicated that API content and hardness of production-scale tablets is predicted with root mean square error of prediction of 1.04 mg and 8.5 N, respectively. Explicit robustness testing for high-flux noise and wavelength uncertainty demonstrated the robustness of the API concentration calibration model with respect to normal instrument operating conditions. Published: October 6, 2005 The views presented in this article do not necessarily reflect those of the Food and Drug Administration.  相似文献   

8.
Monoclonal antibodies (mAbs) are biopharmaceuticals produced by mammalian cell lines in bioreactors at a variety of scales. Cell engineering, media optimization, process monitoring, and control strategies for in vitro production have become crucial subjects to meet increasing demand for these high value pharmaceuticals. Raman Spectroscopy has gained great attention in the pharmaceutical industry for process monitoring and control to maintain quality assurance. For the first time, this article demonstrated the possibility of subclass independent quantitative mAb prediction by Raman spectroscopy in real time. The developed model estimated the concentrations of different mAb isotypes with average prediction errors of 0.2 (g/L) over the course of cell culture. In situ Raman spectroscopy combined with chemometric methods showed to be a useful predictive tool for monitoring of real time mAb concentrations in a permeate stream without sample removal. Raman spectroscopy can, therefore, be considered as a reliable process analytical technology tool for process monitor, control, and intensification of downstream continuous manufacturing. The presented results provide useful information for pharmaceutical industries to choose the most appropriate spectroscopic technology for their continuous processes.  相似文献   

9.
A novel technique is described for the measurement of the volume fraction of biomass in a suspension by the simultaneous measurement of the conductivity of a suspension containing cells and of the medium in which the cells are suspended. The presence of non-conducting particulate matter in a suspension will cause the conductivity of a suspension to be decreased relative to that of the medium in which the particles are suspended. A simple equation (the Bruggeman equation) describes the relationship between the volume fraction of non-conducting particulate matter and the decrease in conductivity. The accuracy of this method for the determination of the biomass concentration of plant cells (Festuca arundinacea) in culture was shown. The method was successfully applied to the on-line determination of biomass concentrations during the growth of F. arundinacea cultures, and gave good agreement with biomass levels as determined from measurements of the radio-frequency dielectric permittivity of such cultures.  相似文献   

10.
The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the “vial method.” The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (ΔT; 2°C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with ΔT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and “vial-method” resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few “warm” edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of ΔT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.  相似文献   

11.
The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components—glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm−1) of interest for individual variables are X1139–X1141 for glucose, X846–X849 for lactate, and X2941–X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.  相似文献   

12.
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (−45°C). Published: February 10, 2006  相似文献   

13.
Online monitoring of viable cell volume (VCV) is essential to the development, monitoring, and control of bioprocesses. The commercial availability of steam‐sterilizable dielectric‐spectroscopy probes has enabled successful adoption of this technology as a key noninvasive method to measure VCV for cell‐culture processes. Technological challenges still exist, however. For some cell lines, the technique's accuracy in predicting the VCV from probe‐permittivity measurements declines as the viability of the cell culture decreases. To investigate the cause of this decrease in accuracy, divergences in predicted vs. actual VCV measurements were directly related to the shape of dielectric frequency scans collected during a cell culture. The changes in the shape of the beta dispersion, which are associated with changes in cell state, are quantified by applying a novel “area ratio” (AR) metric to frequency‐scanning data from the dielectric‐spectroscopy probes. The AR metric is then used to relate the shape of the beta dispersion to single‐frequency permittivity measurements to accurately predict the offline VCV throughout an entire fed‐batch run, regardless of cell state. This work demonstrates the possible feasibility of quantifying the shape of the beta dispersion, determined from frequency‐scanning data, for enhanced measurement of VCV in mammalian cell cultures by applying a novel shape‐characterization technique. In addition, this work demonstrates the utility of using changes in the shape of the beta dispersion to quantify cell health. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:479–487, 2014  相似文献   

14.
Tang XC  Nail SL  Pikal MJ 《AAPS PharmSciTech》2006,7(4):E105-E111
This article evaluates the procedures for determining the vial heat transfer coefficient and the extent of primary drying through manometric temperature measurement (MTM). The vial heat transfer coefficients (Kv) were calculated from the MTM-determined temperature and resistance and compared with Kv values determined by a gravimetric method. The differences between the MTM vial heat transfer coefficients and the gravimetric values are large at low shelf temperature but smaller when higher shelf temperatures were used. The differences also became smaller at higher chamber pressure and smaller when higher resistance materials were being freeze-dried. In all cases, using thermal shields greatly improved the accuracy of the MTM Kv measurement. With use of thermal shields, the thickness of the frozen layer calculated from MTM is in good agreement with values obtained gravimetrically. The heat transfer coefficient “error” is largely a direct result of the error in the dry layer resistance (ie, MTM-determined resistance is too low). This problem can be minimized if thermal shields are used for freeze-drying. With suitable use of thermal shields, accurate Kv values are obtained by MTM; thus allowing accurate calculations of heat and mass flow rates. The extent of primary drying can be monitored by real-time calculation of the amount of remaining ice using MTM data, thus providing a process analytical tool that greatly improves the freeze-drying process design and control.  相似文献   

15.
Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small‐scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse‐phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (kLa) is used for scale‐up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to “actively manage process variability using a knowledge‐based approach.” Biotechnol. Bioeng. 2009; 104: 340–351 © 2009 Wiley Periodicals, Inc.  相似文献   

16.
17.
Bioreactor scale‐up is a critical step in the production of therapeutic proteins such as monoclonal antibodies (MAbs). With the scale‐up criterion such as similar power input per volume or O2 volumetric mass transfer coefficient ( ), adequate oxygen supply and cell growth can be largely achieved. However, CO2 stripping in the growth phase is often inadequate. This could cascade down to increased base addition and osmolality, as well as residual lactate increase and compromised production and product quality. Here we describe a practical approach in bioreactor scale‐up and process transfer, where bioreactor information may be limited. We evaluated the sparger and (CO2 volumetric mass transfer coefficient) from a range of bioreactor scales (3–2,000 L) with different spargers. Results demonstrated that for oxygen is not an issue when scaling from small‐scale to large‐scale bioreactors at the same gas flow rate per reactor volume (vvm). Results also showed that sparging CO2 stripping, , is dominated by the gas throughput. As a result, a combination of a minimum constant vvm air or N2 flow with a similar specific power was used as the general scale‐up criterion. An equation was developed to determine the minimum vvm required for removing CO2 produced from cell respiration. We demonstrated the effectiveness of using such scale‐up criterion with five MAb projects exhibiting different cell growth and metabolic characteristics, scaled from 3 to 2,000 L bioreactors across four sites. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1146–1159, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号