首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

2.
1. Management of invasive species benefits from detailed information on the biology of the invaders, both from where they have already invaded, and from within their areas of origin. Western mosquitofish, Gambusia affinis, is a widely invasive and destructive freshwater fish. However, within its native range, G. affinis co‐exists with many other fish species in a wide variety of habitats without obvious harm. 2. In this study, we used data on fish communities within the native range of G. affinis at 154 sites across a broad spatial scale to examine the effects of G. affinis on species richness and diversity of residual (species other than G. affinis) fish assemblages. We further used data based on annual samples at eight fixed river sites over 18 summers to examine temporal population dynamics of G. affinis and to test factors associated with population fluctuations. 3. Higher residual species richness occurred in the presence of G. affinis, but residual diversity did not differ. We found an inverse relationship between relative abundance of G. affinis and residual species richness (although effect size was extremely small), but no effect on residual diversity. 4. Gambusia affinis populations fluctuated markedly across summers at all eight fixed sites, but population sizes at a site over time were not autocorrelated. However, population fluctuations were highly correlated among sites across all years, suggesting that regional factors influenced population size. Regional abundance of G. affinis did not correlate with drought, rainfall or winter temperature, but varied with spring temperature. We suggest earlier onset of reproduction in warmer springs resulted in larger summer populations. 5. Overall, within its native range, G. affinis does not appear to impact negatively on the assemblages in which it occurs, possibly due to fluctuations in its density. These findings suggest that introduced Gambusia populations, and those of other invasive species, warrant careful monitoring over long periods of time where they have invaded. Long‐term monitoring of new populations can establish if they are prone to ‘boom and bust’ dynamics, in which case the invader may be less a threat than sometimes assumed. Population information from long‐term studies, either in their native ranges or at invaded sites, can thus help to form the basis of prudent, cost‐effective management strategies for invasive organisms.  相似文献   

3.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

4.
Many studies in South Africa have examined the impacts of alien plants on ecosystems, but none have assessed the impact of guava (Psidium guajava L.) invasion on soil properties. In this study, soils underneath guava-invaded sites were assessed to determine if they had different soil physico-chemical properties (pH, P, C, N, Na, K, Ca, Mg, moisture, penetration resistance, infiltration and water repellency) as compared to soils underneath uninvaded sites. Comparisons were made from three different sites over three autumn months. Results show that soil pH was significantly (p < 0.005) higher underneath uninvaded than guava-invaded sites. Soil P was three times higher underneath guava-invaded as compared to invaded sites. The soils collected underneath guava-invaded sites had a significantly (p < 0.001) higher moisture content and were less compact but more repellent than soils from the uninvaded sites. Infiltration rate was significantly (p < 0.001) higher in the uninvaded than the guava-invaded sites. The study concludes that guava invasion alters some soil properties, thus creating favourable conditions for its growth and making it potentially more invasive. From a management standpoint, guava removal is encouraged; however, given guava's socio-economic importance more research on cost and benefits is required.  相似文献   

5.
生物入侵过程中的植物-土壤反馈:一种入侵植物的凋落物分解对其本地近缘植物的影响 植物入侵可通过正或负的植物-土壤反馈效应改变土壤的生物和非生物性质,从而影响入侵栖息地的土壤理化性质。许多入侵物种的凋落物分解可增加土壤养分,降低本地植物多样性,并导致进一步的植物入侵。关于入侵植物凋落物在不同土壤类型及深度分解及反馈效应的研究依然很少。本研究旨在明确入侵植物南美蟛蜞菊(Sphagneticola trilobata)凋落物在不同土壤类型和不同土壤深度条件下的分解情 况及其对本地近缘植物蟛蜞菊(S. calendulacea)生理生长的影响。将装有南美蟛蜞菊凋落物的尼龙袋加入到不同深度(即0、2、4 和6 cm)的砂土、营养土和粘土中,经6个月的分解后,回收凋落物袋并计算分解速率,随后在凋落物分解处理后的土壤中种植本地蟛蜞菊,并在生长期结束时测量其生理生态指标。研究结果表明,所有处理土壤类型中,凋落物在土壤深度为2和4 cm处分解后显著增加了土壤养分,而对本 地蟛蜞菊的叶片叶绿素、叶氮含量等生长指标表现为负效应。因此,入侵植物南美蟛蜞菊凋落物分解对土壤养分表现为正的反馈效应,而对本地植物蟛蜞菊的生长表现为负效应。我们的研究结果还表明,入侵植物的凋落物分解对土壤和本地物种的影响还因凋落物分解所在的土壤深度而显著不同。未来的研究应侧重于入侵栖息地中更多本地和入侵物种的植物-土壤反馈效应,以及更多土壤类型和土壤深度的入侵植物凋落物效应。  相似文献   

6.
Soil pathogens affect plant community structure and function through negative plant–soil feedbacks that may contribute to the invasiveness of non‐native plant species. Our understanding of these pathogen‐induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non‐native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non‐native species and influence invasiveness. We isolated oomycetes from four sites over a 2‐year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non‐native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non‐native plant species.  相似文献   

7.
Ground dwelling spiders are important predators in the detrital food web, which plays important roles in nutrient cycling and energy flow in forest ecosystems. The cursorial spider assemblage in a Beech-Maple forest in southwestern Michigan at sites where and invasive plant, Vinca minor, has invaded was compared to a native site within the same forest and to the forest prior to invasion by the plant. Pitfall traps were used to sample cursorial spiders over the course of a summer. Vinca minor substantially altered the forest floor spider assemblage. The invasive plant reduced the total activity-abundance of spiders by nearly 49% and depressed species diversity and evenness; in contrast, species richness was not affected. We found that V. minor changed the guild and family structure with wolf spiders being common at sites where the plant had invaded. Vinca minor reduced the abundance of vagrant web building and crab spiders. Similarity indices revealed that the spider communities between the two sites were quite dissimilar (Bray-Curtis = 0.506; Jaccard’s = 0.520). Importantly, comparison to a study conducted in the same forest 28 years earlier showed that the cursorial spider assemblage in the forest prior to Vinca invasion was very different than it was after Vinca invaded but was similar to the current native site in species and guild composition. We conclude that invasion by Vinca has caused the striking changes we observed in community organization of this important group of forest floor predators. We suggest that changes in the physical structure of the litter/soil microhabitat with the invasion of V. minor are likely the cause of the substantial impacts of the plant on the spider assemblage.  相似文献   

8.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

9.
Basing conservation interventions on evidence is important for justifying their associated cost and gauging their effectiveness. For amphibians, the number of studies available to support conservation action plans is limited. Here, we sought to determine the effect of invasive pine trees on the calling densities of a Critically Endangered frog species, endemic to the Western Cape province in South Africa. The Rough Moss frog, Arthroleptella rugosa, is an anuran restricted to a small patch of fire-driven fynbos habitat prone to invasion by Cluster Pines, Pinus pinaster. We use acoustic spatially explicit capture–recapture methods to estimate frog densities at multiple sites (n = 12) over ten years. Sites were classified as invaded or uninvaded by P. pinaster, and this information, along with the time since the last fire, were used as explanatory variables for frog density in a generalized linear mixed model. Frog densities were found to be significantly affected by P. pinaster invasion status. At invaded sites, there was a negative relationship between call densities and time since fire, while at uninvaded sites the same relationship was positive. These results confirm previous suggestions that invasive pine trees cause population declines in A. rugosa. Our findings can be used to support conservation interventions for A. rugosa, specifically the use of fire in an adaptive management context to control pine invasion across its range.  相似文献   

10.
Most research examining how herbivores and pathogens affect performance of invasive plants focuses on aboveground interactions. Although important, the role of belowground communities remains poorly understood, and the relative impact of aboveground and belowground interactions is still debated. As well, most studies of belowground interactions have been carried out in controlled environments, so little is known about the role of these interactions under natural conditions or how these relationships may change across a plant's range. Using the invasive plant Cirsium arvense, we performed a reciprocal transplant experiment to test the relative impacts of above‐ and belowground interactions at three sites across a 509‐km latitudinal gradient in its invaded range in Ontario, Canada. At each site, C. arvense seedlings were protected with above‐ and/or belowground exclosures in a factorial design. Plant performance (biomass, height, stem thickness, number of leaves, length of longest leaf, maximum rhizome length) was greatest when both above‐ and belowground exclosures were applied and lowest when no exclosures were applied. When only one type of exclosure was applied, biomass generally improved more with belowground exclosures than with aboveground exclosures. Despite site‐to‐site differences in foliar damage, root damage, and mesofaunal populations, belowground interactions generally had a greater negative impact on performance than aboveground herbivory alone. These results stress the importance of including both aboveground enemy interactions and plant–soil interactions in studies of plant community dynamics and invader performance.  相似文献   

11.
Up to 6,800 plant species endemic to oceanic islands are highly threatened with extinction. Although habitat destruction and fragmentation have greatly contributed to this, it is generally recognised that invasive alien species currently pose the single most important threat to island plants. Most studies exploring the role of novel interspecific interactions in driving declines of island plants, focus on threats mediated by animals, be it direct (e.g. browsing, seed predation, mutualism disruption) or indirect (e.g. extinction of seed dispersal or pollination mutualists). Relatively few studies have investigated the specific role of plant-plant interactions, particularly in-situ. We studied a threatened island endemic plant in rapid decline to evaluate the short (1–2 years) and medium-term (about 1–2 decades) influence of invasive alien plants (IAPs) on individuals and a variety of proxies of plant fitness. We compared mortality of traceable individuals that were recorded 12–20 years previously between habitats that are invaded with IAPs and habitats where IAPs are absent, or have been removed decades ago. We also carried out an in-situ manipulative experiment using 14 randomly chosen plants from around which IAPs were removed, paired with controls, at two sites. Canopy cover change before and after IAPs’ removal was quantified along with above ground biomass of IAPs removed for use as potential explanatory variables of change in proxies of plant fitness. Ten branches were randomly selected per plant and branch dynamics, leaves’ sizes and reproductive structure production were monitored quarterly for two years. Over the medium term, plant mortality was recorded only in presence of IAPs (X2 = 4.80, df = 1, p < 0.05). Over the short term, at the plant level, IAPs’ removal triggered overall weak to moderate improvements in the number of surviving and new branches as well as change in number of branches at one of the sites. At the leaf and branch levels, we found weak evidence for positive effects of IAPs removal on surviving leaves, flower buds produced and difference in leaf surface area per branch in one site. We therefore provide some experimental evidence of negative effects of alien plants on overall fitness of the threatened species in-situ presumably through competitive interactions. We posit that these effects were found to be weak to moderate due to the short experimental period over which they could develop (1–2 years). Overall, IAPs stand out as the most severe threat from among all documented threats to the species, for being the only one capable of causing mortality of adult plants. Results hence highlight island plants’ vulnerability to IAPs, and how their timely control would improve the survival and fitness of threatened plants, even at the scale of single individuals. Such a strategy could be more often employed. Our study stresses on prioritising IAPs’ control for rescuing long-lived threatened plants that grow in habitats invaded by alien plants (itself a very common situation on oceanic islands) before addressing other subtler, slower-acting threats, like disrupted pollination or seed dispersal mutualisms, florivory or seed predation.  相似文献   

12.
Alterations to ecosystem nitrogen (N) cycling by introduced plant species may increase the invasibility of habitat providing a positive feedback for the introduced species to become invasive. Spatial patterns of foliar and soil δ15N ratios reflect variation in rates and process of N‐cycling across invaded landscapes and provide insight into N‐source uptake and utilization strategies of invasive plant species. To evaluate invasion‐associated changes in soil and foliar δ15N at different scales: regional (among different sites), local (between north‐ and south‐facing aspect at the same site), and microsite (within populations in the same community), we measured foliar and soil δ15 N, animal faeces cover (as a proxy for grazing intensity) and N2‐fixing species cover from inside to outside Thymus vulgaris L. (thyme)‐invaded lightly grazed pastoral communities in Central Otago, southern South Island, New Zealand. Mean thyme foliar δ15N were near‐zero across the invaded landscape, and did not change across the advancing edge of invasion or with aspect. There was no evidence that associations with N2‐fixing species provide a potential N source. Soil δ15N was lower inside of thyme compared to at the edge or outside of thyme and was varied between aspects at some sites. Animal faeces cover as a proxy for grazing intensity explained only 23% of this observed variation of soil δ15N. Thyme invasion may result in lowered soil δ15N reflecting alterations to N dynamics. Associated invasion‐related impacts of animal grazing may also impact soil δ15N. Further studies are required to distinguish the underlying mechanism responsible for the observed patterns of foliar and soil δ15N values across thyme‐invaded Central Otago landscapes.  相似文献   

13.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

14.
Climate change is predicted to increase the risk of drought in many temperate agroecosystems. While the impact of drought on aboveground plant‐herbivore‐natural enemy interactions has been studied, little is known about its effects on belowground tritrophic interactions and root defense chemistry. We investigated the effects of low soil moisture on the interaction between maize, the western corn rootworm (WCR, Diabrotica virgifera), and soil‐borne natural enemies of WCR. In a manipulative field experiment, reduced soil moisture and WCR attack reduced plant performance and increased benzoxazinoid levels. The negative effects of WCR on cob dry weight and silk emergence were strongest at low moisture levels. Inoculation with entomopathogenic nematodes (EPNs, Heterorhabditis bacteriophora) was ineffective in controlling WCR, and the EPNs died rapidly in the warm and dry soil. However, ants of the species Solenopsis molesta invaded the experiment, were more abundant in WCR‐infested pots and predated WCR independently of soil moisture. Ant presence increased root and shoot biomass and was associated with attenuated moisture‐dependent effects of WCR on maize cob weight. Our study suggests that apart from directly reducing plant performance, drought can also increase the negative effects of root herbivores such as WCR. It furthermore identifies S. molesta as a natural enemy of WCR that can protect maize plants from the negative impact of herbivory under drought stress. Robust herbivore natural enemies may play an important role in buffering the impact of climate change on plant‐herbivore interactions.  相似文献   

15.
The effects of invasive plants on plants native to areas that are being invaded can be quite variable, depending on the species of the invasive plant involved as well as the physical characteristics of the location being invaded. My study focuses on the effects of Phragmites australis Linnaeus (common reed) and Lythrum salicaria L. (purple loosestrife) on the same native plant community. Uninvaded plots dominated by native plants Typha angustifolia L. (narrowleaf cattail) and Typha latifolia L. (broadleaf cattail) served as the control. I surveyed percent cover of species during early summer and midsummer for 3 years in six Hudson River freshwater tidal wetlands (sites). Differences in species richness, composition and abundance were small, but significant among invaded and uninvaded plots and among sites. However, these differences remained significant when data for dominant species (invasive and native) were removed. Differences in native plant species abundance were attributed to invasive plant species-specific characteristics and differences in species richness and composition were attributed to physical location (zonation) in these freshwater tidal marshes. “Invasive” status of a dominant plant species was less important in invasive plant–native plant interactions than species-specific characteristics and zonation. Further research into the effects of site and land-use on invasive plant impacts is recommended.  相似文献   

16.
Exotic invasive plants can show strong plant–soil feedback responses, but little is known about time scales for significant changes in soil microbial communities to occur after invasion. Previous work has suggested that plant invasions can modify arbuscular mycorrhizal (AM) fungal community structure. However, there is a lack of understanding about how long it takes for these changes to develop. To test this we investigated temporal changes in AM fungal communities colonising the invasive plant Vincetoxicum rossicum (Apocynaceae). We hypothesised that AM fungal community structure would change in a particular direction during the invasion process. We collected soil from two sites with a long history of invasion by this plant, with each site having paired invaded and uninvaded plots. Soil from these plots was used in a glasshouse experiment to characterise AM fungal community structure in the roots of V. rossicum at different times throughout a simulated growing season. AM fungal community structure differed between invaded and uninvaded plots. However, contrasting with our hypothesis, AM fungal communities colonising V. rossicum growing in soil from uninvaded plots did not change towards those in plants growing in previously invaded soil. Our data suggest that changes to AM fungal communities in the presence of V. rossicum require longer than the first growing season after establishment to develop.  相似文献   

17.
  • Soil seed banks are essential elements of plant population dynamics, enabling species to maintain genetic variability, withstand periods of adversity and persist over time, including for cactus species. However knowledge of the soil seed bank in cacti is scanty. In this study, over a 5‐year period we studied the seed bank dynamics, seedling emergence and nurse plant facilitation of Polaskia chende, an endemic columnar cactus of central Mexico.
  • P. chende seeds were collected for a wild population in Puebla, Mexico. Freshly collected seeds were sown at 25 °C and 12‐h photoperiod under white light, far‐red light and darkness. The collected seeds were divided in two lots, the first was stored in the laboratory and the second was use to bury seeds in open areas and beneath a shrub canopy. Seeds were exhumed periodically over 5 years. At the same time seeds were sown in open areas and beneath shrub canopies; seedling emergence and survival were recorded over different periods of time for 5 years.
  • The species forms long‐term persistent soil seed banks. The timing of seedling emergence via germination in the field was regulated by interaction between light, temperature and soil moisture. Seeds entered secondary dormancy at specific times according to the expression of environmental factors, demonstrating irregular dormancy cycling.
  • Seedling survival of P. chende was improved under Acacia constricta nurse plants. Finally, plant facilitation affected the soil seed bank dynamics as it promoted the formation of a soil seed bank, but not its persistence.
  相似文献   

18.
Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant–insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum, and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade‐off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for Ostricta. Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of Ostricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size‐dependent, this suggests that Ostricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced sexual reproduction potential.  相似文献   

19.
Invasions by non‐native insects can have important ecological impacts, particularly on island ecosystems. However, the factors that promote the success of invaders relative to co‐occurring non‐invasive species remain unresolved. For invasive ants, access to carbohydrate resources via interactions with both extrafloral nectary‐bearing plants and honeydew‐excreting insects may accelerate the invasion process. A first step towards testing this hypothesis is to determine whether invasive ants respond to variation in the availability of carbohydrate resources, and whether this response differs from that of co‐occurring, non‐invasive ants. We investigated the effect of carbohydrate subsidies on the short‐term foraging and hemipteran‐tending behaviours of the invasive ant Anoplolepis gracilipes (Formicidae) and co‐occurring ant species on an extrafloral nectary‐bearing plant by experimentally manipulating carbohydrate levels and tracking ant recruitment. We conducted experiments in 2 years at two sites: one site was invaded by A. gracilipes prior to 2007 and the other became invaded during the course of our study, allowing pre‐ (2007) and post‐invasion (2009) comparisons. Short‐term increases in carbohydrate availability increased the density of A. gracilipes workers on plants by as much as 400% and reduced tending of honeydew‐excreting insects by this species by up to 89%, with similar responses across years. In contrast, ants at the uninvaded site in 2007 showed a weak and non‐significant forager recruitment response. Across all sites, A. gracilipes workers were the only ants that responded to carbohydrate manipulations in 2009. Furthermore, ant–carbohydrate dynamics at a site newly invaded by A. gracilipes quickly diverged from dynamics at uninvaded sites and converged on those of the site with an established invasion. These findings suggest that carbohydrate resources may be particularly important for A. gracilipes invasions, and underscore the importance of species interactions, particularly putative mutualisms, in facilitating exotic species invasions.  相似文献   

20.
Invasive plant species can alter belowground microbial communities. Simultaneously, the composition of soil microbial communities and the abundance of key microbes can influence invasive plant success. Such reciprocal effects may cause plant–microbe interactions to change rapidly during the course of biological invasions in ways that either inhibit or promote invasive species growth. Here we use a space-for-time substitution to illustrate how effects of soil microbial communities on the exotic legume Vicia villosa vary across uninvaded sites, recently invaded sites, and sites invaded by V. villosa for over a decade. We find that soil microorganisms from invaded areas increase V. villosa growth compared to sterilized soil or live soils collected from uninvaded sites, likely because mutualistic nitrogen-fixing rhizobia are not abundant in uninvaded areas. Notably, the benefits resulting from inoculation with live soils were higher for soils from recently invaded sites compared to older invasions, potentially indicating that over longer time scales, soil microbial communities change in ways that may reduce the success of exotic species. These findings suggest that short-term changes to soil microbial communities following invasion may facilitate exotic legume growth likely because of increases in the abundance of mutualistic rhizobia, but also indicate that longer term changes to soil microbial communities may reduce the growth benefits belowground microbial communities provide to exotic species. Our results highlight the changing nature of plant–microbe interactions during biological invasions and illustrate how altered biotic interactions could contribute to both the initial success and subsequent naturalization of invasive legume species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号