首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the use of caprylic acid based impurity precipitation as (1) an alternative method to polishing chromatography techniques commonly used for monoclonal antibody purification and (2) an impurity reduction step prior to harvesting the bioreactor. This impurity reduction method was tested with protein A purified antibodies and with cell culture fluid. First, the operational parameters influencing precipitation of host cell proteins and high molecular weight aggregate in protein A pools were investigated. When used as a polishing step, the primary factor affecting purification and yield was determined to be pH. Caprylic acid precipitation was comparable to polishing IEX chromatography in reducing host cell protein and aggregate levels. A virus reduction study showed complete clearance of a model retrovirus during caprylic acid precipitation of protein A purified antibody. Caprylic acid mediated impurity precipitation in cell culture showed that the impurity clearance was generally insensitive to pH and caprylic acid concentration whereas yield was a function of caprylic acid concentration. Protein A purification of caprylic acid precipitated cell culture fluid generated less turbid product pool with reduced levels of host cell proteins and high molecular weight aggregate. The results of this study show caprylic acid precipitation to be an effective purification method that can be incorporated into a production facility with minimal cost as it utilizes existing tanks and process flow. Eliminating flow through chromatography polishing step can provide process intensification by avoiding the process tank volume constraints for high titer processes. Biotechnol. Bioeng. 2012; 109: 2589–2598. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

3.
为应对治疗性抗体快速增长的市场需求,抗体上游细胞培养规模和表达量水平已显著提高,而下游纯化工艺的生产效率则相对落后,下游处理能力已成为限制抗体产能的瓶颈。本研究以单克隆抗体mab-X为实验材料,优化了细胞培养液、低pH病毒灭活收集液2种模式的正辛酸(caprylic acid,CA)沉淀工艺条件,并研究了CA处理去除聚体、CA处理灭活病毒等2种应用,在小试的基础上,采用低pH病毒灭活收集液CA沉淀的模式进行了500 L细胞培养规模生产放大研究,对沉淀前后的产品质量和收率进行了检测和对比。结果显示,两种模式的CA沉淀均可显著降低宿主细胞蛋白(host cell protein,HCP)残留和聚体含量,在聚体去除实验中CA沉淀可去除约15%的聚体,病毒灭活研究显示CA对逆转录模型病毒具有完全的病毒灭活能力。在放大生产规模中,下游依次进行了深层过滤收获、亲和层析、低pH病毒灭活、CA沉淀及深层过滤、阳离子交换层析,CA沉淀过程中混合时间和搅拌速度显著影响CA沉淀效果,CA沉淀处理后低pH病毒灭活液中的HCP残留量降低了895倍,沉淀后产品纯度和HCP残留均已控制在单克隆抗体质量要求范围内,CA沉淀可以减少传统纯化工艺中的一个精纯步骤。总之,下游工艺中采用CA沉淀,能够精简传统纯化工艺,并完全满足mab-X的纯化质量要求,而且能提高生产效率、降低生产成本。本研究结果将推动CA沉淀在单克隆抗体下游纯化生产中的应用,为解决目前传统纯化工艺的问题提供参考。  相似文献   

4.
Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett‐Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow‐up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes. In depth analysis of the capture chromatography purification of harvested cell culture fluid yielded significant effects of upstream process parameters on host cell protein abundance and behavior. A variety of methods were used to characterize the antibody both after purification and buffer formulation. This analysis provided insight in to the significant impacts of upstream process parameters on aggregate formation, impurities, and protein structure. This report highlights the utility of linkage studies in identifying how changes in upstream parameters can impact downstream critical quality attributes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:163–170, 2017  相似文献   

5.
The production, purification and stability of quality (in terms of integrity and glycosylation) of an antibody/interleukin-2 fusion protein with potential application in tumour-targeted therapy expressed in BHK21 cells are described. Consistency of the product throughout time was determined by analysis of glycosylation of the fusion protein using MALDI-TOF mass spectroscopy and HPAEC-PAD combined with product integrity studies by SDS-PAGE and Western blotting. These investigations showed consistent expression in terms of integrity and of three major oligosaccharide structures of the fusion protein after 62 generations. The data obtained at this stage indicated the suitability of the cell line for production purposes. Different approaches for the production of this protein were subsequently carried out. The relative productivity of the recombinant fusion protein and general performance of the cells in two different protein-free medium (PFM) culture systems, continuous chemostat and continuous perfusion using a Centritech centrifuge as a cell retention device, were studied. The results indicate that the chemostat culture resulted in more stable and controllable nutrient environment, which could indicate better product consistency, in accordance with what has been observed under serum-containing conditions, in relation to the perfusion culture. Finally, product obtained from the chemostat culture was analysed and purified. The purification process was optimised with an increase in the overall yield from 38 to 70% being obtained, a significant improvement with important consequences for the implementation of an industrial-scale culture system. In conclusion, it was possible to produce and purify the recombinant antibody/interleukin-2 fusion protein assuring the quality and stability of the product in terms of integrity and glycosylation. Therefore, a candidate production process was established.  相似文献   

6.
The ERM protein family members ezrin, radixin, and moesin are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. Here we report on the cloning of myosin regulatory light chain interacting protein (MIR), a protein with an ERM-homology domain and a carboxyl-terminal RING finger, that is expressed, among other tissues, in brain. MIR is distributed in cultured COS cells, in a punctuated manner as shown using enhanced green fluorescent protein (EGFP)-tagged MIR and by staining with a specific antibody for MIR. In the yeast two-hybrid system and in transfected COS cells, MIR interacts with myosin regulatory light chain B, which in turn regulates the activity of the actomyosin complex. Overexpression of MIR cDNA in PC12 cells abrogated neurite outgrowth induced by nerve growth factor (NGF) without affecting TrkA signaling. The results show that MIR, a novel ERM-like protein, affects cytoskeleton interactions regulating cell motility, such as neurite outgrowth.  相似文献   

7.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

8.
Antibody disulfide bond reduction during monoclonal antibody (mAb) production is a phenomenon that has been attributed to the reducing enzymes from CHO cells acting on the mAb during the harvest process. However, the impact of antibody reduction on the downstream purification process has not been studied. During the production of an IgG2 mAb, antibody reduction was observed in the harvested cell culture fluid (HCCF), resulting in high fragment levels. In addition, aggregate levels increased during the low pH treatment step in the purification process. A correlation between the level of free thiol in the HCCF (as a result of antibody reduction) and aggregation during the low pH step was established, wherein higher levels of free thiol in the starting sample resulted in increased levels of aggregates during low pH treatment. The elevated levels of free thiol were not reduced over the course of purification, resulting in carry‐over of high free thiol content into the formulated drug substance. When the drug substance with high free thiols was monitored for product degradation at room temperature and 2–8°C, faster rates of aggregation were observed compared to the drug substance generated from HCCF that was purified immediately after harvest. Further, when antibody reduction mitigations (e.g., chilling, aeration, and addition of cystine) were applied, HCCF could be held for an extended period of time while providing the same product quality/stability as material that had been purified immediately after harvest. Biotechnol. Bioeng. 2017;114: 1264–1274. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.  相似文献   

9.
In therapeutic protein production, the protein purification with chromatographic processes is of high importance in separating the qualified proteins from the impurities for consistent product quality. Therefore, to aid real‐time monitoring of the protein purification processes, various kinds of methodologies have been proposed until now. However, the majority of them still rely on the use of a single ultraviolet (UV) absorbance or the utilization of expensive and time‐consuming instruments, thus requiring a simple, fast, and cost‐effective methodology for protein quantification. In this study, the feasibility of using multiwavelength UV spectroscopy was investigated as an alternative tool for the real‐time monitoring of the protein mixtures in protein purification. To this end, three different proteins were selected as a model system for the protein mixture, and the multivariate UV spectra were analyzed to construct the reliable quantification models for different proteins of interest. By using various chemometrics tools, such as partial least squares (PLS), the validity of estimating the protein concentration from the UV spectra of the mixture samples was rigorously analyzed with their prediction performance, and the results indicated that the multiwavelength UV spectra had sufficient sensitivity and accuracy to estimate the protein concentrations in mixture, demonstrating its usefulness for the rapid quantification of the protein mixtures in protein purification. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:664–671, 2013  相似文献   

10.
Polyamine precipitation conditions for removing host cell protein impurities from the cell culture fluid containing monoclonal antibody were studied. We examined the impact of polyamine concentration, size, structure, cell culture fluid pH and ionic strength. A 96-well microtiter plate based high throughput screening method was developed and used for evaluating different polyamines. Polyallylamine, polyvinylamine, branched polyethyleneimine and poly(dimethylamine-co-epichlorohydrin-ethylenediamine) were identified as efficient precipitants in removing host cell protein impurities. Leveraging from the screening results, we incorporated a polyamine precipitation step into a monoclonal antibody purification process to replace the Protein A chromatography step. The optimization of the overall purification process was performed by taking the mechanisms of both precipitation and chromatographic separation into account. The precipitation-containing process removed a similar amount of process-related impurities, including host cell proteins, DNA, insulin and gentamicin and maintained similar product quality in respect of size and charge variants to chromatography based purification. Overall recovery yield was comparable to the typical Protein A affinity chromatography based antibody purification process.  相似文献   

11.
Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.  相似文献   

12.
Characterization of aggregate size in Taxus suspension cell culture   总被引:1,自引:0,他引:1  
Plant cells grow as aggregates in suspension culture, but little is known about the dynamics of aggregation, and no routine methodology exists to measure aggregate size. In this study, we evaluate several different methods to characterize aggregate size in Taxus suspension cultures, in which aggregate diameters range from 50 to 2,000 μm, including filtration and image analysis, and develop a novel method using a specially equipped Coulter counter system. We demonstrate the suitability of this technology to measure plant cell culture aggregates, and show that it can be reliably used to measure total biomass accumulation compared to standard methods such as dry weight. Furthermore, we demonstrate that all three methods can be used to measure an aggregate size distribution, but that the Coulter counter is more reliable and much faster, and also provides far better resolution. While absolute measurements of aggregate size differ based on the three evaluation techniques, we show that linear correlations are sufficient to account for these differences (R 2 > 0.99). We then demonstrate the utility of the novel Coulter counter methodology by monitoring the dynamics of a batch process and find that the mean aggregate size increases by 55% during the exponential growth phase, but decreases during stationary phase. The results indicate that the Coulter counter method can be routinely used for advanced process characterization, particularly to study the relationship between aggregate size and secondary metabolite production, as well as a source of reliable experimental data for modeling aggregation dynamics in plant cell culture.  相似文献   

13.
Pheromone-inducible aggregation substance (AS) proteins of Enterococcus faecalis are essential for high-efficiency conjugation of the sex pheromone plasmids and also serve as virulence factors during host infection. A number of different functions have been attributed to AS in addition to bacterial cell aggregation, including adhesion to host cells, adhesion to fibrin, increased cell surface hydrophobicity, resistance to killing by polymorphonuclear leukocytes and macrophages, and increased vegetation size in an experimental endocarditis model. Relatively little information is available regarding the structure-activity relationship of AS. To identify functional domains, a library of 23 nonpolar 31-amino-acid insertions was constructed in Asc10, the AS encoded by the plasmid pCF10, using the transposons TnlacZ/in and TnphoA/in. Analysis of these insertions revealed a domain necessary for donor-recipient aggregation that extends further into the amino terminus of the protein than previously reported. In addition, insertions in the C terminus of the protein also reduced aggregation. As expected, the ability to aggregate correlates with efficient plasmid transfer. The results also indicated that an increase in cell surface hydrophobicity resulting from AS expression is not sufficient to mediate bacterial aggregation.  相似文献   

14.
The presence of aggregated forms of proteins can be problematic for therapeutics due to the potential for immunogenic and pharmacokinetic issues. Although downstream processing can remove the aggregated forms, inhibiting aggregate formation upstream during the cell culture stage could reduce the burden on downstream processing and potentially improve process yields. This study first examined the effects of environmental factors (temperature, pH, and dissolved oxygen) and medium components (bivalent copper ion, cysteine, and cystine) on the aggregation of two different recombinant fusion proteins expressed by Chinese hamster ovary (CHO) cells. Any strategy to reduce protein aggregation upstream during cell culture must also consider potential effects on critical upstream parameters such as cell growth, harvest titer, and protein sialylation levels. Manipulating the culture temperature shift and cystine concentration in the medium were both identified as effective and practical strategies for reducing protein aggregation in both CHO-cell expression systems. Furthermore, a combination of both strategies was more effective in reducing protein aggregation levels compared to either approach individually; and without any negative effects on harvest titer and protein sialylation. This study demonstrates a practical methodology for decreasing protein aggregation during upstream processing and emphasizes the importance of process understanding to ensure production of recombinant glycoprotein therapeutics with consistent product quality.  相似文献   

15.
Expanded bed adsorption (EBA) was examined as the initial capture/purification step in the purification of monoclonal antibodies from Chinese hamster ovary (CHO) cultures. Two process alternatives each using EBA were compared to a conventional Protein A process without EBA. One alternative used Protein A affinity EBA followed by packed-bed cation and anion-exchange steps. The other alternative used cation-exchange EBA as the capture step followed by packed-bed Protein A and anion-exchange steps. The process using Protein A EBA produced comparable purity (host cell protein, DNA, Protein A, antibody aggregate) to the conventional process. However, the Protein A EBA column showed a significant decrease in dynamic capacity with a limited number of cycles. The process using cation EBA achieved comparable levels of host cell proteins (HCP) and DNA but not antibody aggregate or leached Protein A compared to the conventional process.  相似文献   

16.
为了制备不含牛血清IgG的细胞培养基(-GFCS培养基),并研究其在杂交瘤细胞体外培养中的应用,采用蛋白G亲和层析的方法,将含有血清的细胞培养基中的牛血清IgG去除,以制备无IgG的培养基。使用该培养基体外培养杂交瘤细胞后,监测细胞生长和上清抗体浓度。对培养上清中的IgG类单克隆抗体可以采用蛋白G亲和层析进行纯化。与示去除牛血清IgG的培养基相比,-GFCS培养基培养的杂交瘤细胞的生长状况及上清抗体浓度均无明显变化;从-GFCS培养上清中成功纯化出不被血清IgG污染的IgG类单克隆抗体,本文结果表明,采用-GFCS培养基体外培养分泌IgG类单抗的杂交瘤细胞,可以简化上清抗体的纯化工艺。  相似文献   

17.
In a previous study, we demonstrated the presence of protein aggregates in an exponentially grown Escherichia coli culture. In light of these observations, protein aggregates could be considered damage to cells that is able to pass from one generation to the next. Based on the assumption that the amount of aggregate protein could represent an aging factor, we monitored this amount in a bacterial culture during senescence. In doing so, we observed (i) a significant increase in the amount of aggregate protein over time, (ii) a proportional relationship between the amount of aggregate protein and the level of dead cells, (iii) a larger amount in dead cells than in culturable cells, (iv) a heterogeneous distribution of different amounts within a homogenous population of culturable cells entering stasis, and (v) that the initial amount of aggregate protein within a culturable population conditioned the death rate of the culture. Together, the results presented in this study suggest that protein aggregates indeed represent one aging factor leading to bacterial cell death.  相似文献   

18.
19.
In a bioreactor culture of genetically engineered Pichia pastoris secreting a bivalent immunotoxin, 64% of the secreted immunotoxin was present in aggregate forms and this resulted in a loss of bioactivity. Biochemical analyses of the secreted immunotoxin and an in vitro aggregation study using purified monomeric immunotoxin suggested that aggregation was primarily an extracellular event. By employing limited methanol feeding at 0.75 mlmin(-1) per 10l initial medium, oxygen consumption was reduced, permitting a lowering of the bioreactor agitation speed from 800 to 400 rpm. By increasing the anti-foam reagent to 0.6 mll(-1), the thickness of the air/liquid interfacial foam layer was reduced by 80%. These steps reduced the immunotoxin aggregates from 64% to 5%. Consequently immunotoxin purification yield was increased from 53.0% to 73.8%. Simultaneously this methodology enhanced immunotoxin secretion to 120 mgl(-1) at 163 h of methanol induction in a toxin resistant production strain. We conclude that minimizing shearing force and reducing the air/liquid interfacial foam area are crucial factors in reducing hydrophobic protein aggregation upon secretory expression in yeast bioreactor cultures.  相似文献   

20.
Mammalian cell culture technology has improved so rapidly over the last few years that it is now commonplace to produce multi-kilogram quantities of therapeutic monoclonal antibodies in a single batch. Purification processes need to be scaled-up to match the improved upstream productivity. In this chapter key practical issues and approaches to the scale-up of monoclonal antibody purification processes are discussed. Specific purification operations are addressed including buffer preparation, chromatography column sizing, aggregate removal, filtration and volume handling with examples given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号