首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential evolutionary consequences of selective hunting of mammals are controversial because of limited evidence and important socio‐economic impacts. Several ecological and management variables facilitate evolutionary responses to selection for horn, tusk or antler size, including strong selective hunting pressure; harvest of males with large horns, tusks or antlers before they can breed; unavailable or ineffective sources of unselected immigrants; and age‐dependent relationships between horn, tusk or antler size and male mating success. Plastic responses of male horns, tusks and antlers to environment are probably more common than evolutionary changes. Evidence for evolutionary effects of selective hunting is strong for large mammals where biological characteristics and hunting regulations combine to favour them.  相似文献   

2.
In sexually dimorphic ungulates, sexual selection favoring rapid horn growth in males may be counterbalanced by a decrease in longevity if horns are costly to produce and maintain. Alternatively, if early horn growth varied with individual quality, it may be positively correlated with longevity. We studied Alpine ibex Capra ibex in the Gran Paradiso National Park, Italy, to test these alternatives by comparing early horn growth and longevity of 383 males that died from natural causes. After accounting for age at death, total horn length after age 5 was positively correlated with horn growth from two to four years. Individuals with the fastest horn growth as young adults also had the longest horns later in life. Annual horn growth increments between two and six years of age were independent of longevity for ibex whose age at death ranged from 8 to 16 years. Our results suggest that growing long horns does not constrain longevity. Of the variability in horn length, 22% could be explained by individual heterogeneity, suggesting persistent differences in phenotypic quality among males. Research on unhunted populations of sexually dimorphic ungulates documents how natural mortality varies according to horn or antler size, and can help reduce the impact of sport hunting on natural processes.  相似文献   

3.
Fitness in highly polygynous male ungulates is related both to body size, weight and antler size. Males must therefore allocate resources both to growth of the body and growth of the antlers, which may lead to tradeoffs whenever resource levels are in limited supply. Several studies have reported how (absolute) growth of antlers and horns are related to environmental conditions, but few have looked for the relative allocation patterns (i.e. relative to body size and weight). We analyzed how the influence of variation in climate (the North Atlantic oscillations, NAO) and population density affected the allocation of resources to antlers, based on data from 2720 red deer stags two years or older harvested during 1965–2002 along the west coast of Norway. Number of antler tines increased up to six years of age, remained stable until 12 years of age, and then decreased significantly (>12 years, n=45). The NAO was positively related to number of antler tines in prime aged males (6–12 years, n=629), also after controlling for both body size and weight. Our study thus suggests that deer have a higher allocation of resources to antlers relative to body weight during favorable environmental conditions.  相似文献   

4.
Secondary sexual traits (e.g., horns and antlers) have ecological and evolutionary importance and are of management interest for game species. Yet, how these traits respond to emerging threats like infectious disease remains underexplored. Infectious pneumonia threatens bighorn sheep (Ovis canadensis) populations across North America and we hypothesized it may also reduce horn growth in male sheep. We assess the effect of pneumonia on horn size in male bighorn sheep using 12 herd datasets from across the western United States that had horn growth and disease data. Disease resulted in 12–35% reduction in increment (yearly) length and 3–13% reduction in total horn length in exposed individuals. The disease effect was prolonged when pathogens continued to circulate in sheep populations. Further, disease likely delays the age at which horns reach ¾-curl and prevents achievement of full-curl. This is further evidenced with 6 of the 12 herds experiencing an increase in average age at harvest following die-off events.  相似文献   

5.
Across most of their native North American range, the horns of mountain sheep (Ovis spp.) males are getting smaller, a pattern attributed to selective hunting pressure. We measured the horns of 755 Dall's sheep males (Ovis dalli dalli) in the southern Mackenzie Mountains, Northwest Territories, between 2002 and 2017. For each male, we measured the circumference and length of each annulus for the right horn and calculated horn volume for each year. We examined changes in horn size in 4 different outfitter areas, using age at harvest as a covariate. Hunting pressure across years in the study area was consistently low, and this population did not experience the decline in horn size observed in several other mountain sheep populations in Canada. Over the 16-year period, the average horn volume of harvested males was stable and even increased in 1 outfitter area. Local management of Dall's sheep delivered independently by the guide outfitters in the Mackenzie Mountains appears to contribute to maintaining a population of males that has not been adversely affected by strong selective hunting pressure. The resilience of this management strategy may be challenged by environmental changes associated with rapid warming in northern mountain environments.  相似文献   

6.
Abstract: Past studies using penned deer provide conflicting results on the age when reliable predictions about antler growth potential in white-tailed deer (Odocoileus virginianus) can be made. We captured wild whitetail males via aerial net gun on 12 ranches in 5 counties in south Texas, USA, from 1999 to 2007 to determine if a reliable juvenile-to-adult relationship in antler development existed. We individually marked and released captured animals at the trap site after we took antler and body measurements. We recaptured marked animals as possible in subsequent years or until we obtained final measurements after legal harvest. Amount of growth in the first set of antlers in whitetail males was a poor predictor of antler growth at maturity. By 4.5 years of age there were no differences (P > 0.05) in antler measurements regardless of the amount of development of the first set of antlers at 1.5 years. We concluded culling of yearling males based on number of antler points would have little positive effect on overall antler quality in future years.  相似文献   

7.
Size-selective harvesting of wild ungulates can trigger a range of ecological and evolutionary consequences. It remains unclear how environmental conditions, including changes in habitat, climate, and local weather conditions, dilute or strengthen the effects of trophy hunting. We analyzed horn length measurements of 2,815 male ibex (Capra pyrenaica) that were harvested from 1995 to 2017 in Els Ports de Tortosa i Beseit National Hunting Reserve in northeastern Spain. We used linear mixed models to determine the magnitude of inter-individual horn growth variability and partial least square path models to evaluate long-term effects of environmental change, population size, and hunting strategy on horn growth. Age-specific horn length significantly decreased over the study period, and nearly a quarter (23%) of its annual variation was attributed to individual heterogeneity among males. The encroachment of pine (Pinus spp.) forests had a negative effect on annual horn growth, possibly through nutritional impoverishment. The harvesting of trophy and selective individuals (e.g., small-horned males) from the entire population increased horn growth, probably because it reduced the competition for resources and prevented breeding of these smaller males. Local weather conditions and population size did not influence horn growth. Our study demonstrates how habitat changes are altering the horn growth of male ibex. We suggest that habitat interventions, such the thinning of pine forests, can contribute to securing the sustainability of trophy hunting. Even in situations where size-selective harvesting is not causing a detectable phenotypic response, management actions leading to the expansion of preferred land cover types, such as grass-rich open areas, can have a positive effect on ungulate fitness. Forest encroachment on open meadows and heterogeneous grasslands is pervasive throughout Mediterranean ecosystems. Therefore, our management recommendations can be extended to the landscape level, which will have the potential to mitigate the side effects of habitat deterioration on the phenotypic traits of wild ibex. © 2020 The Wildlife Society.  相似文献   

8.
Human harvests can select against phenotypes favoured by natural selection, and natural resource managers should evaluate possible artificial selection on wild populations. Because the required genetic data are extremely difficult to gather, however, managers typically rely on harvested animals to document temporal trends. It is usually unknown whether these data are unbiased. We explore our ability to detect a decline in horn size of bighorn sheep (Ovis canadensis) by comparing harvested males with all males in a population where evolutionary changes owing to trophy hunting were previously reported. Hunting records underestimated the temporal decline, partly because of an increasing proportion of rams that could not be harvested because their horns were smaller than the threshold set by hunting regulations. If harvests are selective, temporal trends measured from harvest records will underestimate the magnitude of changes in wild populations.  相似文献   

9.
Evolution and function of horns and hornlike organs in female ungulates   总被引:2,自引:0,他引:2  
The evolutionary bases for horns, antlers, and tusks in male ungulate mammals have been extensively investigated, but the reasons for the presence or absence of hornlike organs in female ungulates have not been thoroughly reviewed. Here I examine (1) the taxonomic distribution of horns and hornlike organs in females and evidence on the evolutionary history of the trait; (2) behavioural evidence on the uses of horns and hornlike organs by females and socio-ecological correlations with female hornedness or hornlessness; and (3) evidence on the role of genes and hormones in controlling the expression of female horns. In cervids, antlered females may be rare because of a constraint to regrow antlers yearly, if at all, small social group sizes, and a direct linkage between androgen production and the initiation of antler growth. For non-cervid ungulate females, there appear to be no overriding or unifying aptive factors governing the evolutionary development of horns or hornlike organs, although the trait may be aptive in some cases.  相似文献   

10.
The development of male secondary sexual characters such as antlers or horns has substantial biological and socio‐economic importance because in many species these traits affect male fitness positively through sexual selection and negatively through trophy hunting. Both environmental conditions and selective hunting can affect horn growth but their relative importance remains unexplored. We first examined how a large‐scale climate index, the Pacific Decadal Oscillation (PDO), local weather and population density influenced both absolute and relative annual horn growth from birth to three years of male bighorn sheep Ovis canadensis over 42 years. We then examined the relative influence of environmental conditions and evolution mainly driven by trophy hunting on male horn length at three years of age. Horn growth was positively influenced by low population density and warm spring temperature, suggesting that ongoing climate change should lead to larger horns. Seasonal values of PDO were highly correlated. Horn growth increased with PDO in spring or summer at low density, but was weak at high density regardless of PDO. The interaction between population density and PDO in spring or summer accounted for a similar proportion of the observed annual variation in horn growth (32% or 37%) as did the additive effects of spring temperature and density (34%). When environmental conditions deteriorated, males allocated relatively more resources to summer mass gain than to horn growth, suggesting a conservative strategy favoring maintenance of condition over allocation to secondary sexual characters. Population density explained 27% of the variation in horn length, while evolutionary effects explained 9% of the variance. Thus, our study underlines the importance of both evolution and phenotypic plasticity on the development of a secondary sexual trait.  相似文献   

11.
Elaborate horns or horn‐like structures in male scarab beetles commonly scale with body size either (a) in a linear fashion with horn size increasing relatively faster than body size or (b) in a threshold‐dependent, sigmoid fashion; that is, males smaller than a certain critical body size develop no or only rudimentary horns, whereas males larger than the threshold size express fully developed horns. The development of linear vs. sigmoid scaling relationships is thought to require fundamentally different regulatory mechanisms. Here we show that such disparate regulatory mechanisms may co‐occur in the same individual. Large males of the south‐east Asian Onthophagus (Proagoderus) watanabei (Ochi & Kon) (Scarabaeidae, Onthophagini) develop a pair of long, curved head horns as well as a single thoracic horn. We show that unlike paired head horns in a large number of Onthophagus species, in O. watanabei the relationship between head horns and body size is best explained by a linear model. Large males develop disproportionately longer horns than small males, but the difference in relative horn sizes across the range of body sizes is small compared to other Onthophagus species. However, the scaling relationship between the thoracic horn and body size is best explained by a strongly sigmoid model. Only males above a certain body size threshold express a thoracic horn and males smaller than this threshold express no horn at all. We found a significant positive correlation between head and thoracic horn length residuals, contrary to what would be expected if a resource allocation tradeoff during larval development would influence the length of both horn types. Our results suggest that the scaling relationship between body size and horn length, and the developmental regulation underlying these scaling relationships, may be quite different for different horns, even though these horns may develop in the same individual. We discuss our results in the context of the developmental biology of secondary sexual traits in beetles. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 473–480.  相似文献   

12.
Identifying factors shaping secondary sexual traits is essential in understanding how their variation may influence male fitness. Little information is available on the allocation of resources to antler growth in territorial ungulates with low sexual size dimorphism. We investigated phenotypic and environmental factors affecting both absolute and relative antler size of male roe deer in three contrasting populations in France and Sweden. In the three populations, we found marked age-specific variation in antler size, with an increase in both absolute and relative antler size between yearling and prime-age stages, followed by a decrease (senescence) for males older than 7 years. Antler size increased allometrically with body mass. This increase was particularly strong for senescent males, suggesting the evolution of two reproductive tactics: heavy old males invested particularly heavily in antler growth (potentially remaining competitive for territories), whereas light old males grew small antlers (potentially abandoning territory defense). Finally, environmental conditions had little effect on antler size: only population density negatively affected absolute antler size in one of the three populations. Antler size may therefore provide an honest signal of male phenotypic quality in roe deer. We discuss the implications of these results in terms of territory tenure and mating competition.  相似文献   

13.
ABSTRACT In ungulates, big males with large weapons typically outcompete other males over access to estrous females. In many species, rapid early growth leads to large adult mass and weapon size. We compared males in one hunted and one protected population of Alpine chamois (Rupicapra rupicapra) to examine the relationship between horn length and body mass. We assessed whether early development and hunter selectivity affected age-specific patterns of body and horn size and whether sport hunting could be an artificial selection pressure favoring smaller horns. Adult horn length was mostly independent of body mass. For adult males, the coefficient of variation of horn length (0.06) was <50% of that for body mass (0.16), suggesting that horn length presents a lower potential for selection and may be less important for male mating success than is body mass. Surprisingly, early development did not affect adult mass because of apparent compensatory growth. We found few differences in body and horn size between hunted and protected populations, suggesting the absence of strong effects of hunting on male phenotype. If horn length has a limited role in male reproductive success, hunter selectivity for males with longer horns is unlikely to lead to an artificial selective pressure on horn size. These results imply that the potential evolutionary effects of selective hunting depend on how the characteristics selected by hunters affect individual reproductive success.  相似文献   

14.
Potential negative artificial selection on horn size is a concern for many harvested ungulates. The mountain goat (Oreamnos americanus) has distinct black horns, but targeting animals based on horn size in the field can be challenging. We analyzed over 23,000 horn records that included base circumference and total length, from which we also derived horn volume, from mountain goats harvested in Alaska, British Columbia, and the Northwest Territories from 1980 to 2016. We tested 3 potential drivers of horn size variation: geographical location, environmental conditions, and artificial selection. We found no support for a latitudinal effect with surprisingly little variation across the sampling distribution. The Pacific Decadal Oscillation had the largest effect outside age in the model, suggesting a role of climate in shaping variation. Mountain goats harvested closer to roads had larger horns, indicating that ease of access might allow hunters to be more selective, though the effect size was small. Our findings reinforce the value of accurate and complete record keeping on horn size, age, and sex of harvested animals, and highlight the importance of explicitly considering climate and accessibility when devising management strategies for the mountain goat.  相似文献   

15.
Human harvests can unwittingly drive evolution on morphology and life history, and these selective effects may be detrimental to the management of natural resources. Although theory suggests that harvest refuges, as sources of unselected animals, could buffer the effects of human exploitation on wild populations, few studies have assessed their efficiency. We analyzed records from >7000 trophy bighorn rams (Ovis canadensis) harvested in Alberta, Canada, between 1974 and 2011 to investigate if the movement of rams from refuges toward harvested areas reduced the effects of selective harvesting on horn size through phenotypic rescue. Rams taken near refuges had horns on average about 3% longer than rams shot far from refuges and were slightly older, suggesting migration from refuges into hunted areas. Rams from areas adjacent to and far from harvest refuges, however, showed similar declines in horn length and increases in age at harvest over time, indicating a decreasing rate of horn growth. Our study suggests that the influx of rams from refuges is not sufficient to mitigate the selective effects of sheep trophy harvest. Instead, we suggest that selective hunting of highly mobile animals may affect the genetic structure of populations that spend part of the year inside protected areas.  相似文献   

16.
Selective harvesting in wild deer (Odocoileus spp.) populations is a common practice that may influence antler size. However, in free-ranging populations, response due to selection is unknown or difficult to quantify because antlers are influenced by nutrition and population demographics. We used quantitative genetic models to predict how white-tailed deer (O. virginianus) antlers would respond to selection and what variables (i.e., population size, age structure, mating ratio, and heritability) most affected antler size. We validated our quantitative genetics program by comparing model results with a population of deer used for controlled breeding experiments; modeled antler points (AP) and score increased (2.2–4.3 AP and 48.5–97.7 cm, respectively) after 8 years of selection, similar to observed increases in AP (3.2) and score (92.3 cm) from the controlled population. In modeled free-ranging populations, mating ratio, age structure, and heritability were more important in influencing antler size than size of the population. However, response to selection in free-ranging populations was lower (0.1–0.9 AP) than controlled breeding populations even after 20 years of selection. These results show that selective harvesting of free-ranging white-tailed deer may be inefficient to change population-level genetic characteristics related to antler size. Response of antlers in free-ranging deer will be less than controlled populations, and possibly modeled free-ranging simulations, because individual reproductive success of males is lower, breeding is done by a large group of males, and reproductive and survival rates are lower. These factors, and others, reduce the amount of improvement that can be made to antlers due to selection. Therefore, selective harvesting in free-ranging populations should be justified for managing population demographics and dynamics, but not for changing the genetic characteristics of populations. © 2011 The Wildlife Society.  相似文献   

17.
Wild sheep in North America are highly prized by hunters and most harvest regulations restrict legal harvest to males with a specified minimum horn curl. Because reproductive success is skewed toward larger males that are socially dominant, these regulations may select against high-quality, fast-growing males. To evaluate potential selective effects of alternative management strategies, we analyzed horn increment measures of males harvested over 28 yr (1975–2003) in 2 bighorn sheep (Ovis canadensis) ecotypes in British Columbia, Canada. Using mixed-effect models we examined variation in hunter selection for horn size, early horn growth, and male age under different harvest regulations (Full Curl, Three Quarter Curl, Any Ram). Under all regulations, males with the greatest early horn growth were harvested at the youngest ages, before the age at which large horns influence reproductive success. Early growth decreased with harvest age and until ≥7 yr of age it was greatest in males harvested under Full Curl regulation. Permit type (General vs. Limited Entry Hunt) and hunter origin (British Columbia Resident vs. Non-Resident) had little effect on horn size of harvested males. Full Curl regulations increased the average age of harvested males by <1 yr relative to Three-Quarter Curl regulations. Age-specific horn measures in the California ecotype harvested under Three-Quarter Curl regulations declined over time but we observed no temporal declines in the Rocky Mountain ecotype, primarily harvested under Full Curl regulations. Management strategies that protect some males with greater early horn growth or provide harvest refuges to maintain genetic diversity are likely to reduce potential for negative effects of artificial selection. © 2010 The Wildlife Society  相似文献   

18.
Darwin considered the horns of male beetles to be among the most striking examples of sexual selection. As with antlers in deer or elk, beetle horns scale positively with male body size, with the result that large males have disproportionately longer horns than small males. It is generally assumed that such scaling relationships (''static allometries'') are insensitive to short-term changes in the environment, and for this reason they are regularly used as diagnostic attributes of populations or species. Here I report breeding experiments on horned beetles that demonstrate that the scaling relationship between male horn length and body size changes when larval nutrition changes. Males reared on a low-quality diet had longer horn lengths at any given body size than sibling males reared on a high-quality diet. Such ''allometry plasticity'' may explain seasonal changes observed in this same scaling relationship in a natural population. These experiments demonstrate that scaling relationships of sexually selected traits can respond facultatively to variation in the environment, thereby revealing a new mechanism by which males regulate the production of exaggerated secondary sexual traits.  相似文献   

19.
There has been growing interest in the determinants of the annual timing of biological phenomena, or phenology, in wild populations, but research on vertebrate taxa has primarily focused on the phenology of reproduction. We present here analyses of the phenology of the annual growth of a secondary sexual characteristic, antlers in red deer (Cervus elaphus) males. The long-term individual-based data from a wild population of red deer on the Isle of Rum, Scotland allow us to consider ecological factors influencing variation in the phenology of growth of antlers, and the implications of variation in antler growth phenology with respect to the phenotype of antler grown (antler mass) and annual breeding success. The phenology of antler growth was influenced by local environmental conditions: higher population density delayed both the start date (during spring) and the relative end date (in late summer) of antler growth, and warmer temperatures in the September and April prior to growth advanced start and end dates, respectively. Furthermore, there was variation between individuals in this phenotypic plasticity of start date, although not in that of end date of growth. The phenology of antler growth impacted on the morphology of antlers grown, with individuals who started and ended growth earliest having the heaviest antlers. The timing of antler growth phenology was associated with breeding success in the following mating season, independently of the mass of antlers grown: an earlier start of antler growth was associated with siring a higher number of the calves born the following spring. Our results suggest that the phenology of traits that are not directly correlated with offspring survival may also regularly show correlations with fitness.  相似文献   

20.
Rhinos are the only modern perissodactyls that possess cranial weapons similar to the horns, antlers and ossicones of modern ruminants. Yet, unlike ruminants, there is no clear relationship between sexual dimorphism and sociality. It is possible to extend the study of the coevolution of sociality and sexual dimorphism into extinct rhinos by examining the demographic patterns in large fossil assemblages. An assemblage of the North American early Miocene (∼22 million years ago) rhino, Menoceras arikarense, from Agate Springs National Monument, Nebraska, exhibits dimorphism in incisor size and nasal bone size, but there is no detectible dimorphism in body size. The degree of dimorphism of the nasal horn is greater than the degree of sexual dimorphism of any living rhino and more like that of modern horned ruminants. The greater degree of sexual dimorphism in Menoceras horns may relate to its relatively small body size and suggests that the horn had a more sex-specific function. It could be hypothesized that Menoceras evolved a more gregarious type of sociality in which a fewer number of males were capable of monopolizing a larger number of females. Demographic patterns in the Menoceras assemblage indicate that males suffered from a localized risk of elevated mortality at an age equivalent to the years of early adulthood. This mortality pattern is typical of living rhinos and indicates that young males were susceptible to the aggressive behaviors of dominant individuals in areas conducive to fossilization (e.g., ponds, lakes, rivers). Menoceras mortality patterns do not suggest a type of sociality different from modern rhinos although a group forming type of sociality remains possible. Among both living and extinct rhinos, the severity of socially mediated mortality seems unrelated to the degree of sexual dimorphism. Thus, sexual dimorphism in rhinos is not consistent with traditional theories about the co-evolution of sexual dimorphism and sociality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号