首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microfluidic technology – the manipulation of fluids at micrometer scales – has revolutionized many areas of synthetic biology. The bottom‐up synthesis of “minimal” cell models has traditionally suffered from poor control of assembly conditions. Giant unilamellar vesicles (GUVs) are good models of living cells on account of their size and unilamellar membrane structure. In recent years, a number of microfluidic approaches for constructing GUVs has emerged. These provide control over traditionally elusive parameters of vesicular structure, such as size, lamellarity, membrane composition, and internal contents. They also address sophisticated cellular functions such as division and protein synthesis. Microfluidic techniques for GUV synthesis can broadly be categorized as continuous‐flow based approaches and droplet‐based approaches. This review presents the state‐of‐the‐art of microfluidic technology, a robust platform for recapitulating complex cellular structure and function in synthetic models of biological cells.  相似文献   

2.
The development of microfluidic platforms for performing chemistry and biology has in large part been driven by a range of potential benefits that accompany system miniaturisation. Advantages include the ability to efficiently process nano- to femoto- liter volumes of sample, facile integration of functional components, an intrinsic predisposition towards large-scale multiplexing, enhanced analytical throughput, improved control and reduced instrumental footprints.1In recent years much interest has focussed on the development of droplet-based (or segmented flow) microfluidic systems and their potential as platforms in high-throughput experimentation.2-4 Here water-in-oil emulsions are made to spontaneously form in microfluidic channels as a result of capillary instabilities between the two immiscible phases. Importantly, microdroplets of precisely defined volumes and compositions can be generated at frequencies of several kHz. Furthermore, by encapsulating reagents of interest within isolated compartments separated by a continuous immiscible phase, both sample cross-talk and dispersion (diffusion- and Taylor-based) can be eliminated, which leads to minimal cross-contamination and the ability to time analytical processes with great accuracy. Additionally, since there is no contact between the contents of the droplets and the channel walls (which are wetted by the continuous phase) absorption and loss of reagents on the channel walls is prevented.Once droplets of this kind have been generated and processed, it is necessary to extract the required analytical information. In this respect the detection method of choice should be rapid, provide high-sensitivity and low limits of detection, be applicable to a range of molecular species, be non-destructive and be able to be integrated with microfluidic devices in a facile manner. To address this need we have developed a suite of experimental tools and protocols that enable the extraction of large amounts of photophysical information from small-volume environments, and are applicable to the analysis of a wide range of physical, chemical and biological parameters. Herein two examples of these methods are presented and applied to the detection of single cells and the mapping of mixing processes inside picoliter-volume droplets. We report the entire experimental process including microfluidic chip fabrication, the optical setup and the process of droplet generation and detection.  相似文献   

3.
The surface properties of high-density lipoproteins (HDLs) are important because different enzymes bind and carry out their functions at the surface of HDL particles during metabolic processes. However, the surface properties of HDL and other lipoproteins are poorly known because they cannot be directly measured for nanoscale particles with contemporary experimental methods. In this work, we carried out coarse-grained molecular dynamics simulations to study the concentration of core lipids in the surface monolayer and the interfacial tension of droplets resembling HDL particles. We simulated lipid droplets composed of different amounts of phospholipids, cholesterol esters (CEs), triglycerides (TGs), and apolipoprotein A-Is. Our results reveal that the amount of TGs in the vicinity of water molecules in the phospholipid monolayer is 25–50% higher compared to the amount of CEs in a lipid droplet with a mixed core of an equal amount of TG and CE. In addition, the correlation time for the exchange of molecules between the core and the monolayer is significantly longer for TGs compared to CEs. This suggests that the chemical potential of TG is lower in the vicinity of aqueous phase but the free-energy barrier for the translocation between the monolayer and the core is higher compared to CEs. From the point of view of enzymatic modification, this indicates that TG molecules are more accessible from the aqueous phase. Further, our results point out that CE molecules decrease the interfacial tension of HDL-like lipid droplets whereas TG keeps it constant while the amount of phospholipids varies.  相似文献   

4.
In this article, we present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy. The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated distearoylphosphatidylcholine:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside G(T1b) or G(M1). The ganglioside-populated SLB arrays were then exposed to either cholera toxin B subunit or tetanus toxin C fragment. Binding was assayed on planar substrates by total internal reflection fluorescence microscopy down to 100 pM concentration for cholera toxin subunit B and 10 nM for tetanus toxin fragment C. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is influenced by the microenvironment of the SLB and the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions.  相似文献   

5.
1. Bilirubin oxidase can catalyse the oxidation of its primary substrate, bilirubin, in a water-in-oil microemulsion, which consists of discrete nanometer-diameter water droplets dispersed in a continuous water-immiscible oil medium. The droplets are stabilized by a monolayer of the surfactant, cetyltrimethylammonium bromide present at the oil/water interface. 2. Spectroscopic evidence is presented to show that bilirubin solubilized in this system is located mainly in the surfactant layer, in a form accessible to the enzyme molecule. 3. Studies are presented on the enzyme-catalysed rate of bilirubin oxidation in this system, as a function of temperature, pH, water content, and substrate and enzyme concentrations. 4. The main conclusions are that the enzyme can efficiently oxidise bilirubin in microemulsions of low water content. The reaction obeys Michaelis-Menten kinetics. The optimal pH for the catalysis is 8.0. The efficiency of catalysis decreases sharply as the water content increases.  相似文献   

6.
The main intrinsic membrane proteins of the human erythrocyte membrane, glycophorin and the anion transporter, were isolated by extraction with Triton X-100 and ion-exchange chromatography. After removal of detergent the extract consisted of proteolipid vesicles with a lipid:protein molar ratio in the range 50-60 and a diameter of the order of 200 nm. The interaction between these vesicles and dipalmitoylphosphatidylcholine (DPPC), cholesterol and cholesterol:DPPC (2:1 molar ratio) monolayers at air/water and n-decane/water interfaces has been studied. The vesicles interact with the monolayers, rapidly causing large increases in surface pressure. Limiting values of surface pressure, 39.4-43 mN . m-1 at air/water and 31.5-33.4 mN . m-1 at the n-decane/water interface, were reached at protein levels above 1 microgram . ml-1. At the air/water interface, and probably at the n-decane/water, surface pressure increases were limited by monolayer collapse. Compression isotherms and surface potential measurements indicated that material from the proteolipid vesicles entered the monolayer phase. In contrast to proteolipid vesicles, injection of protein-free liposomes beneath the monolayer resulted in smaller, slower increases in surface pressure. Thus, the presence of intrinsic membrane proteins in vesicles greatly facilitated the transfer of material into the lipid monolayer.  相似文献   

7.
Summary The effects of colchicine on ultrastructure of the lactating mammary cell in the rat and goat were studied by electron microscopy. Changes in tissue of the rat were examined over time (1, 2 and 4 h). The goat gland was evaluated by comparing ultrastructure of tissue at the time of maximum milk flow suppression induced by the drug with that of untreated tissue. Colchicine produced notable changes in the tissue of both species: 1) the secretion of lipid droplets and Golgi vesicle contents (exocytosis) was inhibited and the droplets and vesicles became randomly distributed throughout the cell, 2) the Golgi apparatus was significantly reduced in size, 3) casein and lipid continued to be synthesized as evidenced by greater numbers of secretory vesicles and increased sizes of casein micelles and lipid droplets, 4) secretory vesicles showed a propensity to cluster around lipid droplets, 5) isolated microtubules were found occasionally in the control tissue, ordinarily in the vicinity of the Golgi apparatus, but rarely in the colchicine-treated tissue. These observations indicate that colchicine has two effects leading to suppression of exocytosis in the mammary cell: one involves early interference with capacity of secretory vesicle membranes to fuse and a further effect, related to higher concentrations of colchicine, causes intracellular disorganization and loss of polarity. Microtubules were not seen as directly involved in the mechanisms of exocytosis. The secretion of milk fat globules is coupled to exocytosis and thereby is also inhibited by colchicine.Supported in part by grant HL 03622 of the U.S. Public Health Service  相似文献   

8.
We report the development of a microfluidic array device for continuous-exchange, cell-free protein synthesis. The advantages of protein expression in the microfluidic array include (1) the potential to achieve high-throughput protein expression, matching the throughput of gene discovery; (2) more than 2 orders of magnitude reduction in reagent consumption, decreasing the cost of protein synthesis; and (3) the possibility to integrate with detection for rapid protein analysis, eliminating the need to harvest proteins. The device consists of an array of units, and each unit can be used for production of an individual protein. The unit comprises a tray chamber for in vitro protein expression and a well chamber as a nutrient reservoir. The tray is nested in the well, and they are separated by a dialysis membrane and connected through a microfluidic connection that provides a means to supply nutrients and remove the reaction byproducts. The device is demonstrated by synthesis of green fluorescent protein, chloramphenicol acetyl-transferase, and luciferase. Protein expression in the device lasts 5-10 times longer and the production yield is 13-22 times higher than in a microcentrifuge tube. In addition, we studied the effects of the operation temperature and hydrostatic flow on the protein production yield.  相似文献   

9.
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis.  相似文献   

10.
Lipid droplets and vesicles can presumably be formed directly from lipoproteins in the extracellular space in atherosclerosis, but an in vitro demonstration of the phenomenon in the absence of cellular pathways has been lacking. Low density lipoproteins (LDL) are known to undergo self-aggregation after brief vortexing in vitro. In the present study, LDL aggregates were examined by electron microscopy, using new mordant techniques for lipid visualization, and by chemical analysis. Aggregation of LDL by vortexing is regularly accompanied by the formation of comparatively large lipid droplets (up to 600 nm diameter) and vesicles. Aggregates containing droplets and vesicles were formed after as little as 5 sec of vortexing, and LDL protein and cholesteryl ester were almost completely (95%) incorporated into aggregates after 4 min vortexing. Substantial fractions of phospholipid and unesterified cholesterol from the original LDL remained in solution even after 4 min vortexing, forming large multilamellar vesicles that did not adhere to the aggregated material. Spontaneous aggregates retrieved from LDL solutions after prolonged storage were also examined by electron microscopy, revealing similar lipid droplets and vesicles. The ultrastructural appearance of LDL aggregated in vitro is remarkably similar to the appearance of extracellular lipid deposits in atherosclerosis, lending credence to the hypothesis of direct extracellular formation of these deposits from lipoproteins.  相似文献   

11.
Lipid droplets are “small” organelles that play an important role in de novo synthesis of new membrane, and steroid hormones, as well as in energy storage. The way proteins interact specifically with the oil-(phospho-)lipid monolayer interface of lipid droplets is a relatively unexplored but crucial question. Here, we use our home built liquid droplet tensiometer to mimic intracellular lipid droplets and study protein-lipid interactions at this interface. As model neutral lipid binding protein, we use apoLp-III, an amphipathic α-helix bundle protein. This domain is also found in proteins from the perilipin family and in apoE. Protein binding to the monolayer is studied by the decrease in the oil/water surface tension. Previous work used POPC (one of the major lipids found on lipid droplets) to form the phospholipid monolayer on the triolein surface. Here we expand this work by incorporating other lipids with different physico-chemical properties to study the effect of charge and lipid head-group size. This study sheds light on the affinity of this important protein domain to interact with lipids.  相似文献   

12.
A novel type of membrane vesicles was formed in vitro from microsomes of Saccharomyces cerevisiae, which carries Dpm1p, an enzyme involved in dolichol-sugar synthesis, but not a typical secretory cargo. While COPII vesicles formed in vitro were sedimentable by centrifugation at 200,000g(max) for 15 min, the novel vesicles were not. However, they were sedimented by additional centrifugation at the same speed for 1 h. Immunoelectron microscopy showed that the Dpm1p-containing vesicles had small vesicular/saccular structures of around 40-50 nm in diameter. The addition of glycerol-3-phosphate and oleoyl-CoA, substrates for lipid biosynthesis, significantly enhanced the efficiency of vesicle budding in an ATP-dependent fashion. Dpm1p was localized to lipid droplets as well as endoplasmic reticulum. Fluorescence microscopy further showed that Dpm1p-GFP was present in restricted subregions in isolated lipid droplets. The possibility that the vesicles were intermediates from the endoplasmic reticulum to lipid droplets was examined, and their possible role is discussed.  相似文献   

13.
Lipid vesicles, e.g. liposomes, generally release their contents in a continuous manner. However, when these vesicles are entrapped in Ca-alginate and coated with poly(L-lysine), they release their contents in an unusual fashion, in 'bursts'. Molecular-level studies indicated that lipid-alginate interactions are responsible for changes in the barrier properties of lipid vesicles. Differential scanning calorimetry revealed that exposure of liposomes to alginate resulted in a 4-fold reduction in the phase transition enthalpy, with no change in the melting temperature. Size-exclusion chromatography of liposomes-in-alginate gave an additional liposomal peak with a smaller elution volume. These studies suggested that alginate is inserted into the lipid bilayer of vesicles. Lipid-alginate interactions were highly dependent on phospholipid head group charge and the phase transition temperature of the phospholipid. Based on these interactions, a mechanism to explain the 'burst' from these entrapped liposomes is suggested.  相似文献   

14.
The efficient analysis and noninvasive detection of molecules such as DNA, mRNA, and miRNA for clinical diagnostics requires sensitive, high-throughput methods. By segregating individual sequences within separate compartments, digital procedures allow identification of very rare sequences. These procedures are based on the limiting dilution of biological samples in individual compartments such as droplets of a water-in-oil emulsion, and relies on the discrete counting of a given event, providing an absolute value and quantitative data. Coupled with microfluidic systems, digital procedures could become an essential diagnostic tool for the study of diseases as well as patient management.  相似文献   

15.
The quasi-elastic incoherent neutron-scattering method has been used to investigate the mobility of water molecules associated with the protein, alpha-chymotrypsin, both in aqueous solution and adjacent to a charged surfactant interface. The latter was studied by solubilizing the protein as monomer in the aqueous cores of small water-in-oil microemulsion droplets (radius 3.5 nm). The droplets were stabilised by an interfacial shell of a double-chain surfactant (Aerosol-OT). The spectra of the water in both these protein-containing system contained a component corresponding to a 7-fold reduction in mobility as compared with bulk water. The integrated intensity of this 'immobilised' spectra component shows that a maximum of approx. 450 water molecules, corresponding to half complete monolayer coverage, are associated with a single protein molecule. This value of 450 may contain a contribution from exchangeable hydrogens within the protein, but this contribution is estimated to be small. The mobility of the remainder of the water is unaffected. The solvation behaviour of the protein is similar in bulk water and in the microemulsion water droplets.  相似文献   

16.
Droplet-based microfluidics has emerged as a powerful tool for single-cell screening with ultrahigh throughput, but its widespread application remains limited by the accessibility of a droplet microfluidic high-throughput screening (HTS) platform, especially to common laboratories having no background in microfluidics. Here, we first developed a microfluidic HTS platform based on fluorescence-activated droplet sorting technology. This platform allowed (i) encapsulation of single cells in monodisperse water-in-oil droplets; (ii) cell growth and protein production in droplets; and (iii) sorting of droplets based on their fluorescence intensities. To validate the platform, a model selection experiment of a binary mixture of Bacillus strains was performed, and a 45.6-fold enrichment was achieved at a sorting rate of 300 droplets per second. Furthermore, we used the platform for the selection of higher α-amylase-producing Bacillus licheniformis strains from a mutant library generated by atmospheric and room temperature plasma mutagenesis, and clones displaying over 50% improvement in α-amylase productivity were isolated. This droplet screening system could be applied to the engineering of other industrially valuable strains.  相似文献   

17.
The storage stability of bilirubin oxidase was studied in water-in-oil CTAB microemulsions with a chloroformrich continuous organic phase. The kinetics of the inactivation process were best described by a double exponential equation. Approximately half of enzymatic activity was lost during a "fast" phase with a half life of ca. 50 min, whereas the remaining activity was lost much more slowly (half life ca. 1000 min). Rates of inactivation were not affected significantly by variation of either solvent composition or concentration of water droplets, but inactivation was more rapid when droplet size was very small. Steady-state enzyme kinetics were studied at various stages in the inactivation process, and it was shown that inactivation occurred without change in the K(m) of the enzyme for bilirubin. Stability was also studied in a liquid/solid two-phase system; it was found that the inactivation process in this system; it was found that the inactivation process in this system was best described by a single exponential term. The rate was similar to the "fast" phase rate observed in the water-in-oil microemulsion system. Inactivation of the enzyme slow. Addition of the surfactant CTAB to the aqueous environment increased the rate of inactivation to levels comparable to those of the "slow" phase observed in water-in-oil microemulsions. (c) 1993 Wiley & Sons, Inc.  相似文献   

18.
We have developed a microfluidic platform modeled after the physiologic microcirculation for multiplexed tissue-like culture and high-throughput analysis. Each microfabricated culture unit consisted of three functional components: a 50 microm wide cell culture pocket, an artificial endothelial barrier with 2 microm pores, and a nutrient transport channel. This configuration enabled a high density of cancer cells to be maintained for over 1 week in a solid tumor-like morphology when fed with continuous flow. The microfluidic chip contained 16 parallel units for "flow cell" based experiments where live cells were exposed to a soluble factor and analyzed via fluorescence microscopy or flow-through biochemistry. Each fluidically independent tissue unit contained approximately 500 cells fed with a continuous flow of 10 nL/min. As a demonstration, the toxicity profile of the anti-cancer drug paclitaxel was collected on HeLa cells cultured in the microfluidic format and compared with a 384-well dish for up to 5 days of continuous drug exposure.  相似文献   

19.
Summary The adhesion to horizontal, planar lipid membranes of lipid vesicles containing calcein in the aqueous compartment or fluorescent phospholipids in the membranes has been examined by phase contrast, differential interference contrast and fluorescence microscopy. With water-immersion lenses, it was possible to study the interactions of vesicles with planar bilayers at magnifications up to the useful limit of light microscopy. In the presence of 15 mM calcium chloride, vesicles composed of phosphatidylserine and either phosphatidylethanolamine or soybean lipids adhere to the torus, bilayer and lenses of planar bilayers of the same composition. Lenses of solvent appear, at the site where vesicles attach to decane-based bilayers and lipid fluorophores move from the vesicles to the lenses. Because the calcein contained in such vesicles is not released, we interpret this as indicating fusion of only the outer monolayer (hemifusion) of the vesicles with the decane lenses. In the case of squalene-based black lipid membranes (BLMs), in contrast, vesicles do not nucleate lenses but they apparently do fuse with the torus at the bilayer boundary. Interactions leading to hemifusions between vesicles and planar membranes thus occur predominantly in regions where hydrocarbon solvent is present. Osmotic water flow, induced by addition of urea to the compartment containing vesicles, causes coalescence of lenses in decane-based, BLMs as well as coalescence of the aqueous spaces of the vesicles that have undergone hemifusion with the lenses. We did not observe transfer of the aqueous phase of vesicles to therans side of either decane-or squalene-based planar membranes; however, we cannot rule out the possibility particularly in the latter case, that rupture of the planar membrane may have been an immediate result of vesicle fusion and thus precluded its detection.  相似文献   

20.
We investigated the possible role of SP-B proteins in the function of lung surfactant. To this end, lipid monolayers at the air/water interface, bilayers in water, and transformations between them in the presence of SP-B were simulated. The proteins attached bilayers to monolayers, providing close proximity of the reservoirs with the interface. In the attached aggregates, SP-B mediated establishment of the lipid-lined connection similar to the hemifusion stalk. Via this connection, a lipid flow was initiated between the monolayer at the interface and the bilayer in water in a surface-tension-dependent manner. On interface expansion, the flow of lipids to the monolayer restored the surface tension to the equilibrium spreading value. SP-B induced formation of bilayer folds from the monolayer at positive surface tensions below the equilibrium. In the absence of proteins, lipid monolayers were stable at these conditions. Fold nucleation was initiated by SP-B from the liquid-expanded monolayer phase by local bending, and the proteins lined the curved perimeter of the growing fold. No effect on the liquid-condensed phase was observed. Covalently linked dimers resulted in faster kinetics for monolayer folding. The simulation results are in line with existing hypotheses on SP-B activity in lung surfactant and explain its molecular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号