首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Much theoretical evidence has demonstrated that a trade‐off between competitive and dispersal ability plays an important role in facilitating species coexistence. However, experimental evidence from natural communities is still rare. Here, we tested the competition–dispersal trade‐off hypothesis in an alpine grassland in the Tianshan Mountains, Xinjiang, China, by quantifying competitive and dispersal ability using a combination of 4 plant traits (seed mass, ramet mass, height, and dispersal mode). Our results show that the competition–dispersal trade‐off exists in the alpine grassland community and that this pattern was primarily demonstrated by forbs. The results suggest that most forb species are constrained to be either good competitors or good dispersers but not both, while there was no significant trade‐off between competitive and dispersal ability for most graminoids. This might occur because graminoids undergo clonal reproduction, which allows them to find more benign microenvironments, forage for nutrients across a large area and store resources in clonal structures, and they are thus not strictly limited by the particular resources at our study site. To the best of our knowledge, this is the first time the CD trade‐off has been tested for plants across the whole life cycle in a natural multispecies plant community, and more comprehensive studies are still needed to explore the underlying mechanisms and the linkage between the CD trade‐off and community composition.  相似文献   

2.
There is increasing evidence that geographic and climatic clines drive the patterns of plant defence allocation and defensive strategies. We quantified early growth rate and both constitutive and inducible chemical defences of 18 Pinaceae species in a common greenhouse environment and assessed their defensive allocation with respect to each species' range across climatic gradients spanning 31o latitude and 2300 m elevation. Constitutive defences traded‐off with induced defences, and these defensive strategies were associated with growth rate such that slow‐growing species invested more in constitutive defence, whereas fast‐growing species invested more in inducible defence. The position of each pine species along this trade‐off axis was in turn associated with geography; moving poleward and to higher elevations, growth rate and inducible defences decreased, while constitutive defence increased. These geographic patterns in plant defence were most strongly associated with variation in temperature. Climatic and geographical clines thus act as drivers of defence profiles by mediating the constraints imposed by trade‐offs, and this dynamic underlays global patterns of defence allocation.  相似文献   

3.
Introduced plant species that became successful invaders appear often more vigorous and taller than their conspecifics in the native range. Reasons postulated to explain this better performance in the introduced range include more favourable environmental conditions and release from natural enemies and pathogens. According to the Evolution of Increased Competitive Ability hypothesis (EICA hypothesis) there is a trade‐off between investment into defence against herbivores and pathogens, and investment into a stronger competitive ability. In this study, we conducted field surveys to investigate whether populations of the invasive perennial Solidago gigantea Ait (Asteraceae) differ with respect to growth and size in the native and introduced range, respectively. We assessed size and morphological variation of 46 populations in the native North American range and 45 populations in the introduced European range. Despite considerable variation between populations within continents, there were pronounced differences between continents. The average population size, density and total plant biomass were larger in European than in American populations. Climatic differences and latitude explained only a small proportion of the total variation between the two continents. The results show that introduced plants can be very distinct in their growth form and size from conspecifics in the native range. The apparently better performance of this invasive species in Europe may be the result of changed selection pressures, as implied by the EICA hypothesis.  相似文献   

4.
Aboveground fungal pathogens can substantially reduce biomass production in grasslands. However, we lack a mechanistic understanding of the drivers of fungal pathogen infection and impact. Using a grassland global change and biodiversity experiment we show that the trade‐off between plant growth and defense is the main determinant of infection incidence. In contrast, nitrogen addition only indirectly increased incidence via shifting plant communities towards faster growing species. Plant diversity did not decrease incidence, likely because spillover of generalist pathogens or dominance of susceptible plants counteracted negative diversity effects. A fungicide treatment increased plant biomass production and high levels of infection incidence were associated with reduced biomass. However, pathogen impact was context dependent and infection incidence reduced biomass more strongly in diverse communities. Our results show that a growth‐defense trade‐off is the key driver of pathogen incidence, but pathogen impact is determined by several mechanisms and may depend on pathogen community composition.  相似文献   

5.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

6.
Trade‐offs are central to many topics in biology, from the evolution of life histories to ecological mechanisms of species coexistence. Trade‐offs observed among species may reflect pervasive constraints on phenotypes that are achievable given biophysical and resource limitations. If so, then among‐species trade‐offs should be consistent with trade‐offs within species. Alternatively, trait variation among co‐occurring species may reflect historical contingencies during community assembly rather than within‐species constraints. Here, we test whether a key trade‐off between relative growth rate (RGR) and water‐use efficiency (WUE) among Sonoran Desert winter annual plants is apparent within four species representing different strategies in the system. We grew progeny of maternal families from multiple populations in a greenhouse common garden. One species, Pectocarya recurvata, displayed the expected RGR–WUE trade‐off among families within populations. For other species, although RGR and WUE often varied clinally among populations, among‐family variation within populations was lacking, implicating a role for past selection on these traits. Our results suggest that a combination of limited genetic variation in single traits and negative trait correlations could pose constraints on the evolution of a high‐RGR and high‐WUE phenotype within species, providing a microevolutionary explanation for phenotypes that influence community‐level patterns of abundance and coexistence.  相似文献   

7.
Phenolic compounds are secondary metabolites involved in plant innate chemical defence against pests and diseases. Their concentration varies depending on plant tissue and also on genetic and environmental factors, e.g. availability of nutrient resources. This study examines specific effects of low (LN) and high (HN) nitrogen supply on organ (root, stem and leaf) growth and accumulation of major phenolics [chlorogenic acid (CGA); rutin; kaempferol rutinoside (KR)] in nine hydroponically grown tomato cultivars. LN limited shoot growth but did not affect root growth, and increased concentrations of each individual phenolic in all organs. The strength of the response was organ‐dependent, roots being more responsive than leaves and stems. Significant differences were observed between genotypes. Nitrogen limitation did not change the phenolic content in shoots, whereas it stimulated accumulation in roots. The results show that this trade‐off between growth and defence in a LN environment can be discussed within the framework of the growth–differentiation balance hypothesis (i.e. GDBH), but highlight the need to integrate all plant organs in future modelling approaches regarding the impact of nitrogen limitation on primary and secondary metabolism.  相似文献   

8.
Understanding the functional economics that drives plant investment of resources requires investigating the interface between plant phenotypes and the variation in ecological conditions. While allocation to defence represents a large portion of the carbon budget, this axis is usually neglected in the study of plant economic spectrum. Using a novel geometrical approach, we analysed the co‐variation in a comprehensive set of functional traits related to plant growth strategies, as well as chemical defences against herbivores on all 15 Cardamine species present in the Swiss Alps. By extracting geometrical information of the functional space, we observed clustering of plants into three main syndromes. Those different strategies of growth form and defence were also distributed within distinct elevational bands demonstrating an association between the functional space and the ecological conditions. We conclude that plant strategies converge into clear syndromes that trade off abiotic tolerance, growth and defence within each elevation zone.  相似文献   

9.
Quantitatively linking individual variation in functional traits to demography is a necessary step to advance our understanding of trait‐based ecological processes. We constructed a population model for Asclepias syriaca to identify how functional traits affect vital rates and population growth and whether trade‐offs in chemical defence and demography alter population growth. Plants with higher foliar cardenolides had lower fibre, cellulose and lignin levels, as well as decreased sexual and clonal reproduction. Average cardenolide concentrations had the strongest effect on population growth. In both the sexual and clonal pathway, the trade‐off between reproduction and defence affected population growth. We found that both increasing the mean of the distribution of individual plant values for cardenolides and herbivory decreased population growth. However, increasing the variance in both defence and herbivory increased population growth. Functional traits can impact population growth and quantifying individual‐level variation in traits should be included in assessments of population‐level processes.  相似文献   

10.
A life‐history trade‐off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged‐over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species‐specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed‐effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed‐effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade‐off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade‐off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments.  相似文献   

11.
The allocation of resources to different life‐history traits should represent the best compromise in fitness investment for organisms in their local environment. When resources are limiting, the investment in a specific trait must carry a cost that is expressed in trade‐offs with other traits. In this study, the relative investment in the fitness‐related traits, growth, reproduction and defence were compared at central and range‐edge locations, using the seaweed Ascophyllum nodosum as a model system. Individual growth rates were similar at both sites, whereas edge populations showed a higher relative investment in reproduction (demonstrated by a higher reproductive allocation and extended reproductive periods) when compared to central populations that invested more in defence. These results show the capability of A. nodosum to differentially allocate resources for different traits under different habitat conditions, suggesting that reproduction and defence have different fitness values under the specific living conditions experienced at edge and central locations. However, ongoing climate change may threaten edge populations by increasing the selective pressure on specific traits, forcing these populations to lower the investment in other traits that are also potentially important for population fitness.  相似文献   

12.
The transmission–virulence trade‐off hypothesis is one of the few adaptive explanations of virulence evolution, and assumes that there is an overall positive correlation between parasite transmission and virulence. The shape of the transmission–virulence relationship predicts whether virulence should evolve toward either a maximum or to an intermediate optimum. A positive correlation between each of these traits and within‐host growth is often suggested to underlie the relationship between virulence and transmission. There are few experimental tests of this hypothesis; this study reports on the first empirical test on a plant pathogen. We infected Brassica rapa plants with nine natural isolates of Cauliflower mosaic virus and then estimated three traits: transmission, virulence, and within‐host viral accumulation. As predicted by the trade‐off hypothesis, we observed a positive correlation between transmission and virulence, suggestive of the existence of an intermediate optimum. We discovered the unexpected existence of two groups of within‐host accumulation, differing by at least an order of magnitude. When accumulation groups were not accounted for, within‐host accumulation was correlated neither to virulence nor transmission, although our results suggest that within each group these correlations exist.  相似文献   

13.
Since its original formulation by Janzen in 1966, the hypothesis that obligate ant‐plants (myrmecophytes) defended effectively against herbivores by resident mutualistic ants have reduced their direct, chemical defence has been widely adopted. We tested this hypothesis by quantifying three classes of phenolic compounds (hydrolysable tannins, flavonoids, and condensed tannins) spectrophotometrically in the foliage of 20 ant‐plant and non‐ant‐plant species of the three unrelated genera Leonardoxa,Macaranga and Acacia (and three other closely related Mimosoideae from the genera Leucaena, Mimosa and Prosopis). We further determined biological activities of leaf extracts of the mimosoid species against fungal spore germination (as measure of pathogen resistance), seed germination (as measure of allelopathic activity), and caterpillar growth (as measure of anti‐herbivore defence).
Condensed tannin content in three of four populations of the non‐myrmecophytic Leonardoxa was significantly higher than in populations of the myrmecophyte. In contrast, we observed no consistent differences between ant‐plants and non‐ant‐plants in the Mimosoideae and in the genus Macaranga, though contents of phenolic compounds varied strongly among different species in each of these two plant groups. Similarly, among the investigated Mimosoideae, biological activity against spore or seed germination and caterpillar growth varied considerably but showed no clear relation with the existence of an obligate mutualism with ants. Our results did not support the hypothesis of ‘trade‐offs’ between indirect, biotic and direct, chemical defence in ant‐plants.
A critical re‐evaluation of the published data suggests that support for this hypothesis is more tenuous than is usually believed. The general and well‐established phenomenon that myrmecophytes are subject to severe attack by herbivores when deprived of their ants still lacks an explanation. It remains to be studied whether the trade‐off hypothesis holds true only for specific compounds (such as chitinases and amides whose cost may be the direct negative effects on plants’ ant mutualists), or whether the pattern of dramatically reduced direct defence of ant‐plants is caused by classes of defensive compounds not yet studied.  相似文献   

14.
It has been more than two decades since the formulation of the so‐called ‘trade‐off’ hypothesis as an alternative to the then commonly accepted idea that parasites should always evolve towards avirulence (the ‘avirulence hypothesis’). The trade‐off hypothesis states that virulence is an unavoidable consequence of parasite transmission; however, since the 1990s, this hypothesis has been increasingly challenged. We discuss the history of the study of virulence evolution and the development of theories towards the trade‐off hypothesis in order to illustrate the context of the debate. We investigate the arguments raised against the trade‐off hypothesis and argue that trade‐offs exist, but may not be of the simple form that is usually assumed, involving other mechanisms (and life‐history traits) than those originally considered. Many processes such as pathogen adaptation to within‐host competition, interactions with the immune system and shifting transmission routes, will all be interrelated making sweeping evolutionary predictions harder to obtain. We argue that this is the heart of the current debate in the field and while species‐specific models may be better predictive tools, the trade‐off hypothesis and its basic extensions are necessary to assess the qualitative impacts of virulence management strategies.  相似文献   

15.
1. Based on the slow‐growth high‐mortality (SGHM) hypothesis, which predicts that prolonged larval development increases mortality from their natural enemies, studies have often assumed that low quality of plants that slows larval development would function as a defence against insect herbivores. However, empirical support for the SGHM hypothesis has been limited, especially in natural and ecologically relevant contexts. 2. In a leafminer Amauromyza flavifrons Meigen (Agromyzidae, Diptera), the SGHM hypothesis was tested along with four other hypotheses (e.g. prey size, mine appearance, density‐dependent parasitism, and plant quality hypotheses) to control for spurious associations between development time and parasitism that are primarily driven by other larval traits. Two host plant species, Saponaria officinalis and Silene latifolia, were grown under varying nitrogen levels, and leafminers developing on these plants were exposed to, or protected from, a natural assembly of parasitoids across the entire course of larval development. 3. On both host plant species, leafminers that survived to an adult stage in the presence of parasitoids had a shorter development time than those in the absence of parasitoids, indicating that parasitoids disproportionately kill leafminers with longer larval development. The results provided concrete evidence for the SGHM hypothesis within the natural ecological context for these interacting species. Moreover, reduced plant quality was associated with higher larval mortality on Sa. officinalis only in the presence of parasitoids, suggesting that low quality could function as indirect plant resistance via SGHM under some tri‐trophic interactions.  相似文献   

16.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

17.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

18.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

19.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

20.
Theories of species coexistence often describe a trade‐off between colonising and competitive abilities. In sessile marine invertebrates, this trade‐off can manifest as trends in species distributions relative to the size of isolated patches of substrate. Based on their abilities to find available substrate and competitively exclude neighbours, good colonisers tend to dominate smaller patches, whereas better competitors tend to monopolise larger patches. In theory, species with equivalent colonising and competitive abilities should display similar distributions across patch sizes. We used patch size to observe this manifestation of the competition‐colonisation trade‐off over 20° of latitude. The trade‐off was more readily observed at lower latitudes and was proportional to the ‘ecological age’ of communities (i.e. the degree of resource acquisition and likelihood of species interactions). Results suggest that ecological age may mediate the prominence of stochastic or deterministic coexistence mechanisms and will depend on the rate of ecological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号