首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Understanding landscape structure and the role of habitat linkages is important to managing wildlife populations in fragmented landscapes. We present a data-based method for identifying local- and regional-scale habitat linkages for American black bears (Ursus americanus) on the Albemarle-Pamlico Peninsula of North Carolina, USA. We used weights-of-evidence, a discrete multivariate technique for combining spatial data, to make predictions about bear habitat use from 1,771 telemetry locations on 2 study areas (n = 35 bears). The model included 3 variables measured at a 0.2-km2 scale: forest cohesion, forest diversity, and forest-agriculture edge density, adequately describing important habitat characteristics for bears on our study area. We used 2 categories of unique habitat conditions to delineate favorable bear habitat, which correctly classified 79.5% of the bear locations in a 10-fold model validation. Forest cohesion and forest-agriculture edge density were the most powerful predictors of black bear habitat use. We used predicted probabilities of bear occurrence from the model to delineate habitat linkages among local and regional areas where bear densities were relatively high. Our models clearly identified 2 of the 3 sites previously recommended for wildlife underpasses on a new, 4-lane highway in the study area. Our approach yielded insights into how landscape metrics can be integrated to identify linkages suitable as habitat and dispersal routes.  相似文献   

2.
Global biodiversity is decreasing rapidly. Parks and protected lands, while designed to conserve wildlife, often cannot provide the habitat protection needed for wide‐ranging animals such as the American black bear (Ursus americanus). Conversely, private lands are often working landscapes (e.g., farming) that have high human footprints relative to protected lands. In southwestern Alberta, road densities are highest on private lands and black bears can be hunted year‐round. On protected lands, road densities are lowest, and hunting is prohibited. On public lands under the jurisdiction of the provincial government (Crown lands), seasonal hunting is permitted. Population estimates are needed to calculate sustainable harvest levels and to monitor population trends. In our study area, there has never been a robust estimate of black bear density and spatial drivers of black bear density are poorly understood. We used non‐invasive genetic sampling and indices of habitat productivity and human disturbance to estimate density and abundance for male and female black bears in 2013 and 2014 using two methods: spatially explicit capture–recapture (SECR) and resource‐selection functions (RSF). Land tenure best explained spatial variation in black bear density. Black bear densities for females and males were highest on parkland and lowest on Crown lands. Sex ratios were female‐biased on private lands, likely a result of lower harvests and movement of females out of areas with high male density. Synthesis and application: Both SECR and RSF methods clearly indicate spatial structuring of black bear density, with a strong influence based on how lands are managed. Land tenure influences the distribution of available foods and risk from humans. We emphasize the need for improved harvest reporting, particularly for non‐licensed hunting on private land, to estimate the extent of black bear harvest mortality.  相似文献   

3.
Abstract: We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p > 0.20) and population estimates with a low coefficient of variation (CV < 20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark-recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark-recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.  相似文献   

4.
American black bears (Ursus americanus) are an iconic wildlife species in the southern Appalachian highlands of the eastern United States and have increased in number and range since the early 1980s. Given an increasing number of human-bear conflicts in the region, many management agencies have liberalized harvest regulations to reduce bear populations to socially acceptable levels. Wildlife managers need reliable population data for assessing the effects of management actions for this high-profile species. Our goal was to use DNA extracted from hair collected at barbed-wire enclosures (i.e., hair traps) to identify individual bears and then use spatially explicit capture-recapture methods to estimate female black bear density, abundance, and harvest rate. We established 888 hair traps across 66,678 km2 of the southern Appalachian highlands in Georgia, North Carolina, South Carolina, and Tennessee, USA, in 2017 and 2018, arranged in 174 clusters of 2–9 traps/cluster. We collected 9,113 hair samples from those sites over 6 weeks of sampling, of which 1,954 were successfully genotyped to 462 individual female bears. Our spatially explicit estimator included a percent forest covariate to explain inhomogeneous bear density across the region. Densities ranged up to 0.410 female bears/km2 and regional abundance was 5,950 (95% CI = 4,988–7,098) female bears. Based on hunter kill data from 2016 to 2018, mean annual harvest rates for females were 12.7% in Georgia, 17.6% in North Carolina, 17.6% in South Carolina, and 22.8% in Tennessee. Our estimated harvest rates for most states approached or exceeded theoretical maximum sustainable levels, and population trend data (i.e., bait-station indices) indicated decreasing growth rates since about 2009. These data suggest that the increased harvest goals and poor hard mast production over a series of prior years reduced bear population abundance in many states. We were able to obtain reasonable population abundance and density estimates because of spatially explicit capture-recapture methods, cluster sampling, and a large spatial extent. Continued monitoring of bear populations (e.g., annual bait-station surveys and periodic population estimation using spatially explicit methods) by state jurisdictions would help to ensure that population trajectories are consistent with management goals. © 2021 The Wildlife Society.  相似文献   

5.
Understanding how environmental factors interact to determine the abundance and distribution of animals is a primary goal of ecology, and fundamental to the conservation of wildlife populations. Studies of these relationships, however, often assume static environmental conditions, and rarely consider effects of competition with ecologically similar species. In many parts of their shared ranges, grizzly bears Ursus arctos and American black bears U. americanus have nearly complete dietary overlap and share similar life history traits. We therefore tested the hypothesis that density patterns of both bear species would reflect seasonal variation in available resources, with areas of higher primary productivity supporting higher densities of both species. We also hypothesized that interspecific competition would influence seasonal density patterns. Specifically, we predicted that grizzly bear density would be locally reduced due to the ability of black bears to more efficiently exploit patchy food resources such as seasonally abundant fruits. To test our hypotheses, we used detections of 309 grizzly and 597 black bears from two independent genetic sampling methods in spatially‐explicit capture–recapture (SECR) models. Our results suggest grizzly bear density was lower in areas of high black bear density during spring and summer, although intraspecific densities were also important, particularly during the breeding season. Black bears had lower densities in areas of high grizzly bear density in spring; however, density of black bears in early and late summer was best explained by primary productivity. Our results are consistent with the hypothesis that smaller‐bodied, more abundant black bears may influence the density patterns of behaviorally‐dominant grizzly bears through exploitative competition. We also suggest that seasonal variation in resource availability be considered in efforts to relate environmental conditions to animal density.  相似文献   

6.
Wildlife density estimates are important to accurately formulate population management objectives and understand the relationship between habitat characteristics and a species’ abundance. Despite advances in density and abundance estimation methods, management of common game species continues to be challenged by a lack of reliable population estimates. In Washington, USA, statewide American black bear (Ursus americanus) abundance estimates are predicated on density estimates derived from research in the 1970s and are hypothesized to be a function of precipitation and vegetation, with higher densities in western Washington. To evaluate current black bear density and landscape relationships in Washington, we conducted a 4-year capture-recapture study in 2 areas of the North Cascade Mountains using 2 detection methods, non-invasive DNA collection and physical capture and deployment of global positioning system (GPS) collars. We integrated GPS telemetry from collared bears with spatial capture-recapture (SCR) data and created a SCR-resource selection model to estimate density as a function of spatial covariates and test the hypothesis that density is higher in areas with greater vegetative food resources. We captured and collared 118 bears 132 times and collected 7,863 hair samples at hair traps where we identified 537 bears from 1,237 detections via DNA. The most-supported model in the western North Cascades depicted a negative relationship between black bear density and an index of human development. We estimated bear density at 20.1 bears/100 km2, but density varied from 13.5/100 km2 to 27.8 bears/100 km2 depending on degree of human development. The model best supported by the data in the eastern North Cascades estimated an average density of 19.2 bears/100 km2, which was positively correlated with primary productivity, with resulting density estimates ranging from 7.1/100 km2 to 33.6 bears/100 km2. The hypothesis that greater precipitation and associated vegetative production in western Washington supports greater bear density compared to eastern Washington was not supported by our data. In western Washington, empirically derived average density estimates (including cubs) were nearly 50% lower than managers expected prior to our research. In eastern Washington average black bear density was predominantly as expected, but localized areas of high primary productivity supported greater than anticipated bear densities. Our findings underscore the importance that black bear density is not likely uniform and management risk may be increased if an average density is applied at too large a scale. Disparities between expected and empirically derived bear density illustrate the need for more rigorous monitoring to understand processes that affect population numbers throughout the jurisdiction, and suggest that management plans may need to be reevaluated to determine if current harvest strategies are achieving population objectives. © 2019 The Wildlife Society.  相似文献   

7.
Abstract: Studies of space use and habitat selection of endangered species are useful for identifying factors that influence fitness of individuals and viability of populations. However, there is a lack of published information regarding these behaviors for the federally threatened Louisiana black bear (Ursus americanus luteolus). We documented space use and habitat selection for 28 female black bears in 2 subpopulations of the Tensas River Basin population in northeast Louisiana, USA. The Tensas subpopulation inhabits a relatively large (>300-km2) contiguous area of bottomland hardwood forest, whereas the Deltic subpopulation exists mainly in 2 small (<7-km2) forested patches surrounded by an agricultural matrix. Females on Deltic maintained smaller seasonal and annual home ranges than females on Tensas (all P < 0.04), except for females with cubs during spring. On Tensas, females with cubs maintained smaller home ranges than females without cubs during spring (P = 0.01), but we did not detect this difference on Deltic or in other seasons. Females on Tensas and Deltic exhibited differences in habitat selection when establishing home ranges and within home ranges (P < 0.001). Deltic females selected mature bottomland hardwood forests and avoided agricultural habitats at both spatial scales. Tensas females selected a mixture of swamps, mature and regenerating forests, and exhibited variation in selection across scale, season, and reproductive status. We suggest that differences in space use and habitat selection between Tensas and Deltic are at least partially due to habitat differences at the landscape (i.e., amount of forested habitat) and patch (i.e., food availability) scales. Our results contribute to the understanding of factors that influence space use and habitat selection by black bears and provide specific information on habitat types selected by Louisiana black bears to agencies involved in habitat protection and restoration for this threatened subspecies.  相似文献   

8.
Rocky Mountain National Park (RMNP) is home to a low-density black bear (Ursus americanus) population that exists at >2,400?m with a very limited growing season. A previous study (1984–1991) found bear densities among the lowest reported (1.37–1.52 bears/100?km2). Because of concerns of viability of this small population, we assessed population size and density of black bears from 2003 to 2006 to determine the current status of RMNP’s bear population. We used three approaches to estimate population size and density: (1) minimum number known, (2) occupancy modeling, and (3) catch per unit effort (CPUE). We used information from capture and remote-triggered cameras, as well as visitor information, to derive a minimum known population estimate of 20–24 individuals and a median density estimate of 1.35 bears/100?km2. Bear occupancy was estimated at 0.46 (SE?=?0.11), with occupancy positively influenced by lodgepole pine stands, non-vegetated areas, and patch density but negatively influenced by mixed conifer stands. We combined the occupancy estimate with mean home-range size and overlap for bears in RMNP to derive a density estimate of 1.44 bears/100?km2. We also related CPUE to density estimates for eight low-density black bear populations to estimate density in RMNP; this estimate (1.03 bears/100?km2) was comparable to the occupancy estimate and suggests that this approach may be useful for future population monitoring. The use of corroborative techniques for assessing population size of a low-density black bear population was effective and should be considered for similar low-density wildlife populations.  相似文献   

9.
American black bears (Ursus americanus) were extirpated from Oklahoma, USA, in the early twentieth century but have since recolonized eastern portions of the state after immigrating from Arkansas, where they were successfully translocated. Within the last 2 decades, a population of black bears was detected in the Oklahoma Ozark region, prompting studies to determine population size, growth rate, and genetic makeup. To understand how black bears were recolonizing the human-dominated landscape, we investigated resource selection at 2 scales. Between 2011 and 2016, we collected global positioning system collar spatial data for 10 males and 13 females. We calculated average kernel density home ranges on a seasonal scale for all collared bears. We used generalized linear mixed models to calculate resource selection functions at the study area, defined by locations of all radio-collared black bears (second order) and the scale of individual black bear home ranges (third order). Resource selection did not differ significantly by sex. Black bears across seasons and scales selected riparian forest and moist oak (Quercus spp.) forest land cover types and mostly selected against indicators of human activity (e.g., pasture-prairie, anthropogenic land cover types, roads, and areas of high human population density). Black bears also selected areas with rugged terrain at high elevations, although not consistently across seasons and scales. Black bear recolonization appeared to be negatively affected by areas and features characterized as human-altered. Further expansion of the range of black bears may be limited by anthropogenic disturbance in the region. © 2021 The Wildlife Society.  相似文献   

10.
Glacier bears are a rare grey color morph of American black bear (Ursus americanus) found only in northern Southeast Alaska and a small portion of western Canada. We examine contemporary genetic population structure of black bears within the geographic extent of glacier bears and explore how this structure relates to pelage color and landscape features of a recently glaciated and highly fragmented landscape. We used existing radiocollar data to quantify black bear home‐range size within the geographic range of glacier bears. The mean home‐range size of female black bears in the study area was 13 km2 (n = 11), whereas the home range of a single male was 86.9 km2. We genotyped 284 bears using 21 microsatellites extracted from noninvasively collected hair as well as tissue samples from harvested bears. We found ten populations of black bears in the study area, including several new populations not previously identified, divided largely by geographic features such as glaciers and marine fjords. Glacier bears were assigned to four populations found on the north and east side of Lynn Canal and the north and west side of Glacier Bay with a curious absence in the nonglaciated peninsula between. Lack of genetic relatedness and geographic continuity between black bear populations containing glacier bears suggest a possible unsampled population or an association with ice fields. Further investigation is needed to determine the genetic basis and the adaptive and evolutionary significance of the glacier bear color morph to help focus black bear conservation management to maximize and preserve genetic diversity.  相似文献   

11.
The Asiatic black bear is one of the most endangered mammals in South Korea owing to population declines resulting from human exploitation and habitat fragmentation. To restore the black bear population in South Korea, 27 bear cubs from North Korea and Russian Far East (Primorsky Krai) were imported and released into Jirisan National Park, a reservoir of the largest wild population in South Korea, in 2004. To monitor the success of this reintroduction, the genetic diversity and population structure of the reintroduced black bears were measured using both mitochondrial and nuclear DNA markers. Mitochondrial D-loop region DNA sequences (615 bp) of 43 Japanese black bears from previous study and 14 Southeast Asian black bears in this study were employed to obtain phylogenetic inference of the reintroduced black bears. The mitochondrial phylogeny indicated Asiatic black bear populations from Russian Far East and North Korea form a single evolutionary unit distinct from populations from Japan and Southeast Asia. Mean expected heterozygosity (H(E)) across 16 microsatellite loci was 0.648 for Russian and 0.676 for North Korean populations. There was a moderate but significant level of microsatellite differentiation (F(ST) = 0.063) between black bears from the 2 source areas. In addition, genetic evidences revealed that 2 populations are represented as diverging groups, with lingering genetic admixture among individuals of 2 source populations. Relatedness analysis based on genetic markers indicated several discrepancies with the pedigree records. Implication of the phylogenetic and genetic evidences on long-term management of Asiatic black bears in South Korea is discussed.  相似文献   

12.
陕西汉中地区黑熊的现状,分布及保护措施   总被引:3,自引:0,他引:3  
1991-1993年,作者在陕西省汉中林区采用三阶抽样设计调查并询访群众,求算每个所选择的最小样本单位(三级区)的方差,推算黑熊整体数量。根据黑熊数量将该地林区划分为3个密度区级:高密度区(0.03头/km ̄2以上),秦岭中山区;中密度区(0.01-0.029头/km ̄2),巴山中山区;低密度区(0.01头/km ̄2以下),秦巴低山丘陵区。全区有黑熊312头,平均密度0.035/km ̄2,遍布10县166个乡。分析了各地黑熊数量多寡的原因,提出了相应的保护措施。  相似文献   

13.
ABSTRACT Noninvasive genetic sampling has become a popular method for obtaining population parameter estimates for black (Ursus americanus) and brown (U. arctos) bears. These estimates allow wildlife managers to develop appropriate management strategies for populations of concern. Black bear populations at Great Dismal Swamp (GDSNWR), Pocosin Lakes (PLNWR), and Alligator River (ARNWR) National Wildlife Refuges in coastal Virginia and North Carolina, USA, were perceived by refuge biologists to be at or above cultural and perhaps biological carrying capacity, but managers had no reliable abundance estimates upon which to base population management. We derived density estimates from 3,150 hair samples collected noninvasively at each of the 3 refuges, using 6–7 microsatellite markers to obtain multilocus genotypes for individual bears. We used Program MARK to calculate population estimates from capture histories at each refuge. We estimated densities using both traditional buffer strip methods and Program DENSITY. Estimated densities were some of the highest reported in the literature and ranged from 0.46 bears/km2 at GDSNWR to 1.30 bears/km2 at PLNWR. Sex ratios were male-biased at all refuges. Our estimates can be directly utilized by biologists to develop effective strategies for managing and maintaining bears at these refuges, and noninvasive methods may also be effective for monitoring bear populations over the long term.  相似文献   

14.
Genetic diversity and differentiation of Kermode bear populations   总被引:5,自引:0,他引:5  
The Kermode bear is a white phase of the North American black bear that occurs in low to moderate frequency on British Columbia's mid-coast. To investigate the genetic uniqueness of populations containing the white phase, and to ascertain levels of gene flow among populations, we surveyed 10 highly polymorphic microsatellite loci, assayed from trapped bear hairs. A total of 216 unique bear genotypes, 18 of which were white, was sampled among 12 localities. Island populations, where Kermodes are most frequent, show approximately 4% less diversity than mainland populations, and the island richest in white bears (Gribbell) exhibited substantial genetic isolation, with a mean pairwise FST of 0.14 with other localities. Among all localities, FST for the molecular variant underlying the coat-colour difference (A893G) was 0.223, which falls into the 95th percentile of the distribution of FST values among microsatellite alleles, suggestive of greater differentiation for coat colour than expected under neutrality. Control-region sequences confirm that Kermode bears are part of a coastal or western lineage of black bears whose existence predates the Wisconsin glaciation, but microsatellite variation gave no evidence of past population expansion. We conclude that Kermodism was established and is maintained in populations by a combination of genetic isolation and somewhat reduced population sizes in insular habitat, with the possible contribution of selective pressure and/or nonrandom mating.  相似文献   

15.
The Wallow Fire, the largest wildfire in Arizona history, encompassed 2,170 km2 and provided a rare opportunity to examine habitat selection and home ranges of American black bears (Ursus americanus) before and after a wildfire. We had fitted global positioning system (GPS) collars on 47 bears from 2005 to April 2011, and 10 of these were still collared when the fire started in May 2011. We captured and collared an additional 7 black bears within the fire perimeter post-fire (Jul–Sep 2011 and Jun 2012). To evaluate how black bears were affected by the fire, we fit a step selection function using a conditional mixed effects Poisson regression model to estimate the relative strength of black bear habitat selection in response to burn severity. Additionally, we estimated home range sizes using an autocorrelated kernel density estimator by means of a continuous-time movement model. We then used a generalized linear model with a negative binomial error distribution and mixed effects to estimate the effect of the burn severity on black bear home range size, while controlling for sex and drought. In spring and summer in years prior to the fire, bears selected areas that later burned in the fire. After the fire, bears used all burn severities, but their selection for high-severity burns decreased significantly in summer 2011 and fall 2012. Home range sizes were 3.06 times larger pre-fire than post-fire. Our study demonstrates that black bears continued to use all burn severities after a major wildfire, and that post-fire conditions did not result in expanded black bear home ranges.  相似文献   

16.
ABSTRACT Estimating black bear (Ursus americanus) population size is a difficult but important requirement when justifying harvest quotas and managing populations. Advancements in genetic techniques provide a means to identify individual bears using DNA contained in tissue and hair samples, thereby permitting estimates of population abundance based on established mark-capture-recapture methodology. We expand on previous noninvasive population-estimation work by geographically extending sampling areas (36,848 km2) to include the entire Northern Lower Peninsula (NLP) of Michigan, USA. We selected sampling locations randomly within biologically relevant bear habitat and used barbed wire hair snares to collect hair samples. Unlike previous noninvasive studies, we used tissue samples from harvested bears as an additional sampling occasion to increase recapture probabilities. We developed subsampling protocols to account for both spatial and temporal variance in sample distribution and variation in sample quality using recently published quality control protocols using 5 microsatellite loci. We quantified genotyping errors using samples from harvested bears and estimated abundance using statistical models that accounted for genotyping error. We estimated the population of yearling and adult black bears in the NLP to be 1,882 bears (95% CI = 1,389-2,551 bears). The derived population estimate with a 15% coefficient of variation was used by wildlife managers to examine the sustainability of harvest over a large geographic area.  相似文献   

17.
When abundant, seeds of the high‐elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone‐producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One‐third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high‐elevation WBP habitat may be diminishing for bears residing in multiple‐use areas.  相似文献   

18.
Aim To create a fine‐scale map of the distribution of Asiatic black bears, identify landscape variables affecting the spatial range of this species and assess population trends using presence–absence data and opinions of local villagers. Location Sichuan Province, south‐western China. Methods We divided the province into 15 × 15 km cells, stratified them by forest cover, elevation and road density and randomly selected 494 cells (21% of province) for surveys. In each cell, we interviewed villagers and ground‐verified their reports of bear presence. We ground‐truthed reports of bear absence by conducting transects for bear sign in the best available habitat. We used logistic regression to identify key variables affecting presence of bears and predict their occurrence in unsampled cells. Results We detected bears in 360 cells (73%). Models correctly predicted bear occurrence in 90.3% of cells where we detected bears and 84.5% of sampled cells where bears were absent. Models predicted 42.7% of Sichuan to be occupied by bears. Bear occurrence was strongly related to forest cover throughout the province. Roads had a negative effect in western region of province. Agricultural lands had a negative effect only when they were distant from forests. Villagers were accurate in their knowledge of bear presence or absence. Interviewed villagers (n = 1816) thought that bears were increasing in 32%, stable in 10%, and decreasing in 58% of cells with bears. Where bear populations were perceived to be declining, villagers identified poaching as the most common cause. Main conclusions Our fine‐scale distribution map can be used for future monitoring and the key landscape factors related to occupancy by bears can be used in management plans for this species. Interviewing local villagers is an efficient and reliable means of assessing distribution, and changes therein, for animals such as bears that often interact with people and leave obvious signs.  相似文献   

19.
Omnivores are generally opportunistic foragers and have a flexible dietary response to resource abundance and availability. Their populations may consist of individuals that differ from each other in terms of their trophic positions, which implies that the dietary response to resource fluctuations differs within a population. We investigated how changes in the abundance of sika deer (Cervus nippon) affected dietary variation and body condition in the Asian black bear (Ursus thibetanus). We used fecal analysis, nitrogen stable isotopes (δ15N), and body measurements to determine whether the variation in dietary meat content of Asian black bears is positively related to variations in the density of the sika deer population, whether male bears have a higher trophic position compared to females, and whether dietary meat content is positively related with body mass or body condition of bears. We found a positive correlation between the occurrence of deer remains in bear feces and deer density, suggesting that bears change their diet in response to temporal changes in deer density. Male bears had higher δ15N values than females, and neither values varied when deer density decreased. Males selectively consumed deer after a reduction in deer density, whereas females consistently consumed more plant-based diet. The δ15N values were positively related with body mass of adult (>4 yr) bears but had no relationship with body condition of bears of either sex or any age class. Deer seem to be an important food source for large adult males, which have an advantage in mating. Thus, increasing herbivore abundance and availability altered the foraging strategy of Asian black bears, but the importance of herbivore on bear diet differs within a population.  相似文献   

20.
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号