首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organogenesis》2013,9(1):10-17
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

2.
Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfra1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfra1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret''s role in early kidney and urinary system development. Here we present a brief overview of the “many faces” of Ret dysfunction in kidney with particular emphasis on Ret''s signaling specificity and intergenic interactions that confer normal urinary system development.Key words: RET, GDNF, kidney, RTK, CAKUT, branching morphogenesis, ureter  相似文献   

3.
《Organogenesis》2013,9(4):177-190
Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfrα1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfrα1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret’s role in early kidney and urinary system development. Here we present a brief overview of the “many faces” of Ret dysfunction in kidney with particular emphasis on Ret’s signaling specificity and intergenic interactions that confer normal urinary system development.  相似文献   

4.
Congenital abnormalities of the kidney and urinary tract (CAKUT) occur in 1 out of 500 newborns, and constitute approximately 20-30% of all anomalies identified in the prenatal period. CAKUT has a major role in renal failure, and there is increasing evidence that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adult life. Moreover, defects in nephron formation can predispose to Wilms tumour, the most frequent solid tumour in children. To understand the basis of human renal diseases, it is essential to consider how the kidney develops.  相似文献   

5.
Angiotensin type 2 receptor gene null mutant mice display congenital anomalies of the kidney and urinary tract (CAKUT). Various features of mouse CAKUT impressively mimic human CAKUT. Studies of the human type 2 receptor (AGTR2) gene in two independent cohorts found that a significant association exists between CAKUT and a nucleotide transition within the lariat branchpoint motif of intron 1, which perturbs AGTR2 mRNA splicing efficiency. AGTR2, therefore, has a significant ontogenic role for the kidney and urinary tract system. Studies revealed that the establishment of CAKUT is preceded by delayed apoptosis of undifferentiated mesenchymal cells surrounding the urinary tract during key ontogenic events, from the ureteral budding to the expansive growth of the kidney and ureter.  相似文献   

6.
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a broad range of disorders that result from abnormalities of the urinary collecting system, abnormal embryonic migration of the kidneys, or abnormal renal parenchyma development. These disorders are commonly found in humans, accounting for 20–30% of all genetic malformations diagnosed during the prenatal period. It has been estimated that CAKUT are responsible for 30–50% of all children with chronic renal disease worldwide and that some anomalies can predispose to adult‐onset diseases, such as hypertension. Currently, there is much speculation regarding the pathogenesis of CAKUT. Common genetic background with variable penetrance plays a role in the development of the wide spectrum of CAKUT phenotypes. This review aims to summarize the possible mechanisms by which genes responsible for kidney and urinary tract morphogenesis might be implicated in the pathogenesis of CAKUT. Birth Defects Research (Part C) 102:374–381, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Congenital anomalies of the kidney and urinary tract (CAKUT) form a group of heterogeneous disorders that affect the kidneys, ureters and bladder, with frequent asynchronous presentations and multiple CAKUT associations in the same individual. Urinary tract formation is a complex process, dependent of the interaction of multiple genes and their sub-product. The same genic alterations can lead to different molecular expressions and different morphological anomalies. The ureterocele is a cystic dilation of the distal intramural ureter, resulting in obstruction of urine flow, dilation of the ureter and renal pelvis and loss of renal function. Two key steps in the urinary tract ontogenesis may be related to ureterocele development: formation and migration of the ureteric bud and its incorporation in the bladder. This review aims to describe the morphological, cellular and biochemical steps, as well as the genes involved in the occurrence of this anomaly.  相似文献   

8.
Mutations in the receptor tyrosine kinase RET are associated with congenital anomalies of kidneys or urinary tract (CAKUT). RET tyrosine Y1015 is the docking site for PLCγ, a major regulator of RET signaling. Abrogating signaling via Y1015 causes CAKUT that are markedly different than renal agenesis in Ret-null or RetY1062F mutant mice. We performed analysis of Y1015F mutant upper and lower urinary tracts in mice to delineate its molecular and developmental roles during early urinary tract formation. We found that the degeneration of the common nephric ducts (CND), the caudal-most Wolffian duct (WD) segment, depends on Y1015 signals. The CNDs in Y1015F mutants persist owing to increased proliferation and reduced apoptosis, and showed abundance of phospho-ERK-positive cells. In the upper urinary tract, the Y1015 signals are required for proper patterning of the mesonephros and metanephros. Timely regression of mesonephric mesenchyme and proper demarcation of mesonephric and metanephric mesenchyme from the WD depends on RetY1015 signaling. We show that the mechanism of de novo ectopic budding is via increased ERK activity due to abnormal mesenchymal GDNF expression. Although reduction in GDNF dosage improved CAKUT it did not affect delayed mesenchyme regression. Experiments using whole-mount immunofluorescence confocal microscopy and explants cultures of early embryos with ERK-specific inhibitors suggest an imbalance between increased proliferation, decreased apoptosis and increased ERK activity as a mechanism for WD defects in RetY1015F mice. Our work demonstrates novel inhibitory roles of RetY1015 and provides a possible mechanistic explanation for some of the confounding broad range phenotypes in individuals with CAKUT.  相似文献   

9.
Congenital anomalies of the kidney and urinary tract (CAKUT) include vesicoureteral reflux (VUR). VUR is a complex, genetically heterogeneous developmental disorder characterized by the retrograde flow of urine from the bladder into the ureter and is associated with reflux nephropathy, the cause of 15% of end-stage renal disease in children and young adults. We investigated a man with a de novo translocation, 46,X,t(Y;3)(p11;p12)dn, who exhibits multiple congenital abnormalities, including severe bilateral VUR with ureterovesical junction defects. This translocation disrupts ROBO2, which encodes a transmembrane receptor for SLIT ligand, and produces dominant-negative ROBO2 proteins that abrogate SLIT-ROBO signaling in vitro. In addition, we identified two novel ROBO2 intracellular missense variants that segregate with CAKUT and VUR in two unrelated families. Adult heterozygous and mosaic mutant mice with reduced Robo2 gene dosage also exhibit striking CAKUT-VUR phenotypes. Collectively, these results implicate the SLIT-ROBO signaling pathway in the pathogenesis of a subset of human VUR.  相似文献   

10.
《Organogenesis》2013,9(1):26-32
Branching morphogenesis in the developing mammalian kidney involves growth and branching of the ureteric bud (UB), leading to formation of its daughter collecting ducts, calyces, pelvis and ureters. Even subtle defects in the efficiency and/or accuracy of this process have profound effects on the ultimate development of the kidney and result in congenital abnormalities of the kidney and urinary tract. This review summarizes current knowledge regarding a number of genes known to regulate UB development and emphasizes an emerging role for the renin-angiotensin system (RAS) in renal branching morphogenesis. Mutations in the genes encoding components of the RAS in mice cause renal papillary hypoplasia, hydronephrosis, and urinary concentrating defect. These findings imply that UB-derived epithelia are targets for angiotensin (ANG) II actions during metanephric kidney development. Here, it is proposed that papillary hypoplasia in RAS-deficient mice is secondary to an intrinsic defect in the development of the renal medulla. This hypothesis is based on the following observations: a) UB and surrounding stroma express angiotensinogen (AGT) and ANG II AT1 receptors in vivo; b) ANG II stimulates UB cell process extension, branching and cord formation in collagen gel cultures in vitro; and c) AT1 blockade inhibits ANG II-induced UB cell branching. It is further postulated that ANG II is a novel stroma-derived factor involved in stroma/UB cross-talk which regulates UB branching morphogenesis.  相似文献   

11.
Renal (Na + K)-ATPase was studied to ascertain whether it follows the pattern of adaptation of membrane-bound enzymes that are inhibited by acute ethanol exposure and develop greater activity after chronic ethanol treatment. A colony of rats was given 20 per cent (v/v) ethanol as sole drinking solution throughout gestation, lactation and following weaning. (Na + K)-ATPase and ouabain-insensitive Ca(2+)-ATPase activities were determined; regional distribution of these enzymes was assessed in renal cortex and outer medulla. Control rats drank tap water. (Na + K)-ATPase in whole homogenate of kidney increased with age in controls and ethanol-fed rats, but the latter showed higher values at every age studied. Between 15 and 60 days of age, the control group showed 2-fold increases in cortex and 5-fold in outer medulla, whereas ethanol-fed rats reached a 3-fold increase in the enzyme activity in both renal regions. Ca(2+)-ATPase showed the same time course in developing kidney of both groups. Chronic ethanol treatment of adult rats resulted in an increase of (Na + K)-ATPase activity in cortex and outer medulla, but no change in other ATPases. Since an earlier maturational development of renal (Na + K)-ATPase was displayed by ethanol-fed rats, underlying mechanisms that may account for these results are discussed.  相似文献   

12.
Branching morphogenesis in the developing mammalian kidney involves growth and branching of the ureteric bud (UB), leading to formation of its daughter collecting ducts, calyces, pelvis and ureters. Even subtle defects in the efficiency and/or accuracy of this process have profound effects on the ultimate development of the kidney and result in congenital abnormalities of the kidney and urinary tract. This review summarizes current knowledge regarding a number of genes known to regulate UB development and emphasizes an emerging role for the renin-angiotensin system (RAS) in renal branching morphogenesis. Mutations in the genes encoding components of the RAS in mice cause renal papillary hypoplasia, hydronephrosis, and urinary concentrating defect. These findings imply that UB-derived epithelia are targets for angiotensin (ANG) II actions during metanephric kidney development. Here, it is proposed that papillary hypoplasia in RAS-deficient mice is secondary to an intrinsic defect in the development of the renal medulla. This hypothesis is based on the following observations: (a) UB and surrounding stroma express angiotensinogen (AGT) and ANG II AT1 receptors in vivo; (b) ANG II stimulates UB cell process extension, branching and cord formation in collagen gel cultures in vitro; and (c) AT1 blockade inhibits ANG II-induced UB cell branching. It is further postulated that ANG II is a novel stroma-derived factor involved in stroma/UB cross-talk which regulates UB branching morphogenesis.Key Words: kidney development, branching morphogenesis, renin-angiotensin, stromal mesenchyme, ureteric bud  相似文献   

13.
Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5?% of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.  相似文献   

14.
15.
Urea production from arginine was studied in vitro in the kidney of normal rats in tubule suspensions of the four different renal zones (cortex, outer and inner stripe of outer medulla, and inner medulla), and in individual microdissected nephron segments. Tissue was incubated with L-[guanido-14C]-arginine to measure cellular arginase activity. Addition of urease to the incubate freed 14CO2 from the 14C-urea formed by arginase and released from the cells. CO2 was trapped in KOH and counted. These experiments revealed that significant amounts of urea are produced in the outer stripe and in the inner medulla. This intrarenal urea generation takes place mainly in the proximal straight tubule and in the collecting duct, with increasing activity in these two structures from superficial to deep regions of the kidney. Urea is known to play a critical role in the urinary concentrating process. The fact that some urea can be produced in the mammalian kidney, and that the two structures showing this capacity are straight portions of the renal tubular system descending along the corticopapillary axis suggest that this urea production might play a role in the formation and/or maintenance of the medullary urea concentration gradient.  相似文献   

16.
Inositol 1,4,5-trisphosphate receptor (IP(3)-receptor) is a calcium channel, transporting calcium from intracellular stores to the cytoplasm. In kidney, IP(3)-receptors are involved in the signal transduction of various hormones. In our work we studied the effect of immobilization stress on the IP(3)-receptor's protein content in renal cortex and the medulla of normotensive and hypertensive rats. We detected both mRNA and type 1 IP(3)-receptor protein in medulla, but not in renal cortex. We found that this receptor was approximately twice as abundant in normotensive as in genetically hypertensive rat kidney. Immobilization stress decreased the amount of type 1 IP(3)-receptor in the renal medulla of normotensive rats approximately five times, while no effect due to single and/or repeated stress was observed in the renal medulla of spontaneously hypertensive rats. The results indicate that expression of type 1 IP(3)-receptor in renal medulla is modulated by hypertension and immobilization stress.  相似文献   

17.
The kidney is a highly specialized organ with a complex, stereotyped architecture and a great diversity of functions and cell types. Because the microscopic organization of the nephron, the functional unit of the kidney, has a consistent relationship to the macroscopic anatomy of the kidney, knowledge of the characteristic patterns of gene expression in different compartments of the kidney could provide insight into the functions and functional organization of the normal nephron. We studied gene expression in dissected renal lobes of five adult human kidneys using cDNA microarrays representing approximately 30,000 different human genes. Total RNA was isolated from sections of the inner and outer cortex, inner and outer medulla, papillary tips, and renal pelvis and from glomeruli isolated by sieving. The results revealed unique and highly distinctive patterns of gene expression for glomeruli, cortex, medulla, papillary tips, and pelvic samples. Immunohistochemical staining using selected antisera confirmed differential expression of several cognate proteins and provided histological localization of expression within the nephron. The distinctive patterns of gene expression in discrete portions of the kidney may serve as a resource for further understanding of renal physiology and the molecular and cellular organization of the nephron.  相似文献   

18.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

19.
The present study was designed to determine whether nonhypertensive elevations of plasma ANG II would modify the expression of genes involved in renal injury that could influence oxidative stress and extracellular matrix formation in the renal medulla using microarray, Northern, and Western blot techniques. Sprague-Dawley rats were infused intravenously with either ANG II (5 ng. kg(-1). min(-1)) or vehicle for 7 days (n = 6/group). Mean arterial pressure averaged 110 +/- 0.6 mmHg during the control period and 113 +/- 0.4 mmHg after ANG II. The mRNA of 1,751 genes ( approximately 80% of all currently known rat genes) that was differentially expressed (ANG II vs. saline) in renal outer and inner medulla was determined. The results of 12 hybridizations indicated that in response to ANG II, 11 genes were upregulated and 25 were downregulated in the outer medulla, while 11 were upregulated and 13 were downregulated in the inner medulla. These differentially expressed genes, most of which were not known previously to be affected by ANG II in the renal medulla, were found to group into eight physiological pathways known to influence renal injury and kidney function. Particularly, expression of several genes would be expected to increase oxidative stress and interstitial fibrosis in the outer medulla. Western blot analyses confirmed increased expression of transforming growth factor-beta1 and collagen type IV proteins in the outer medulla. Results demonstrate that nonhypertensive elevations of plasma ANG II can significantly alter the expression of a variety of genes in the renal outer medulla and suggested the vulnerability of the renal outer medulla to the injurious effect of ANG II.  相似文献   

20.
Prostaglandin E2 is converted to 15-keto-13,14 dihydro prostaglandin E2,15-keto-prostaglandin F2 alpha and 15-keto-13,14 dihydro prostaglandin F2 alpha, by supernatants from rat kidney medulla. The main pathway for prostaglandin E2 inactivation is the combined action of 15 hydroxy dehydrogenase and delta 13 reductase enzymes. 9-Keto-reductase route constitutes a minor pathway. Prostaglandin F2 alpha is converted into 15-keto-prostaglandin F2 alpha, 15-keto-13, 14 dihydro prostaglandin F2 alpha and 15-keto-dihydro prostaglandin E2. Enzyme activities are time and substrate-concentration dependent. In the presence of an excess of substrate, rat renal medulla inactivates 40 and 56 times more prostaglandin E2 and prostaglandin F2 alpha, respectively, than the amount which is released under basal conditions. These results are in contrast to the generally accepted concept that the kidney cortex is the sole site of renal prostaglandin catabolism, and suggest, for the first time, that rat renal medulla may be a key site for the modulation of prostaglandin levels in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号