共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor-promoting arm of transforming growth factor beta(TGF-β)receptor signaling contributes to advanced cancer progression and is considered a master regulator of breast cancer metastasis.In mammals,there are six distinct members in the tumor-necrosis factor receptor(TNFR)-associated factor(TRAF)family(TRAF1–TRAF6),with the function of TRAF4 not being extensively studied in the past decade.Although numerous studies have suggested that there is elevated TRAF4 expression in human cancer,it is still unknown in which oncogenic pathway TRAF4 is mainly implicated.This review highlights TGF-β-induced SMAD-dependent signaling and non-SMAD signaling as the major pathways regulated by TRAF4 involved in breast cancer metastasis. 相似文献
2.
3.
Leslie Pomeraniec Melissa Hector-Greene Marcelo Ehrlich Gerard C. Blobe Yoav I. Henis 《Molecular biology of the cell》2015,26(17):3117-3127
Complex formation among transforming growth factor-β (TGF-β) receptors and its modulation by coreceptors represent an important level of regulation for TGF-β signaling. Oligomerization of ALK5 and the type II TGF-β receptor (TβRII) has been thoroughly investigated, both in vitro and in intact cells. However, such studies, especially in live cells, are missing for the endothelial cell coreceptor endoglin and for the ALK1 type I receptor, which enables endothelial cells to respond to TGF-β by activation of both Smad2/3 and Smad1/5/8. Here we combined immunoglobulin G–mediated immobilization of one cell-surface receptor with lateral mobility studies of a coexpressed receptor by fluorescence recovery after photobleaching (FRAP) to demonstrate that endoglin forms stable homodimers that function as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind to endoglin with differential dependence on TβRII, which plays a major role in recruiting ALK5 to the complex. Signaling data indicate a role for the quaternary receptor complex in regulating the balance between TGF-β signaling to Smad1/5/8 and to Smad2/3. 相似文献
4.
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts. 相似文献
5.
6.
Su KH Shyue SK Kou YR Ching LC Chiang AN Yu YB Chen CY Pan CC Lee TS 《Journal of cellular physiology》2011,226(12):3330-3339
Erythropoietin (EPO), the key hormone for erythropoiesis, also increases nitric oxide (NO) bioavailability in endothelial cells (ECs), yet the definitive mechanisms are not fully understood. Increasing evidence has demonstrated that β common receptor (βCR) plays a crucial role in EPO-mediated non-hematopoietic effects. We investigated the role of βCR in EPO-induced endothelial NO synthase (eNOS) activation in bovine aortic ECs (BAECs) and the molecular mechanisms involved. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR) in ECs. Inhibition of βCR or EPOR by neutralizing antibodies or small interfering RNA abolished the EPO-induced NO production. Additionally, blockage of βCR abrogated the EPO-induced increase in the phosphorylation of eNOS, Akt, Src, or Janus kinase 2 (JAK2). Immunoprecipitation analysis revealed that treatment with EPO increased the interaction between βCR and eNOS, which was suppressed by inhibition of Src, JAK2, or Akt signaling with specific pharmacological inhibitors. Furthermore, EPO-induced EC proliferation, migration, and tube formation were blocked by pretreatment with βCR antibody and Src, JAK2, or PI3K/Akt inhibitors. Moreover, in vivo experiments showed that EPO increased the level of phosphorylated eNOS, Src, JAK2, and Akt, as well as βCR-eNOS association in aortas and promoted the angiogenesis in Matrigel plug, which was diminished by βCR or EPOR neutralizing antibodies. Our findings suggest that βCR may play an integrative role in the EPO signaling-mediated activation of eNOS in ECs. 相似文献
7.
8.
9.
Zhang W Zeng Z Fan S Wang J Yang J Zhou Y Li X Huang D Liang F Wu M Tang K Cao L Li X Xiong W Li G 《Journal of molecular histology》2012,43(3):297-306
Gene expression profiling had revealed that TGF-β superfamily type I receptor (also known as activin receptor-like kinase-1, ALK1) and TGFβR2 (TGF-β type II receptor) were down-regulated in nasopharyngeal carcinoma (NPC) (P < 0.05, respectively). However, no study with significantly large clinical samples to address the relevance of ALK1 and TGFβR2 in NPC progression or in patient outcomes has been reported. This study aims to assess the possible correlations of ALK1 and TGFβR2 expression with NPC progression and their potential prognostic predictive ability in NPC outcomes. ALK1 and TGFβR2 mRNA and protein levels were detected by qRT-PCR and NPC tissue microarray (TMA), which included 742 tissue cores. Both mRNA and protein levels of ALK1 and TGFβR2 were significantly lower in the cancer tissues compared with the non-cancerous tissues (P < 0.05). Epstein-Barr virus small RNA (EBER-1) hybridization signals in NPC showed significant associations with ALK1 and TGFβR2 proteins (P = 0.000 and 0.003, respectively). In the final logistic regression analysis model, the abnormal expression of ALK1 and TGFβR2 were found to be independent contributors to nasopharyngeal carcinogenesis (P = 0.000 and 0.000, respectively). A survival analysis revealed that ALK1 (Disease Free Survival (DFS): P = 0.002, Overall Survival (OS): P = 0.007) and TGFβR2 (DFS: P = 0.072, OS: P = 0.045) could predict the prognosis of NPC patients. The positive expression of ALK1 and TGFβR2 were independent risk factors for DFS and OS in multivariate analyses (DFS: P = 0.001 and 0.420, respectively; OS: P = 0.018 and 0.047, respectively). These results suggest that ALK1 and TGFβR2 may be useful prognostic biomarkers in NPC. 相似文献
10.
11.
12.
Browaeys-Poly E Blanquart C Perdereau D Antoine AF Goenaga D Luzy JP Chen H Garbay C Issad T Cailliau K Burnol AF 《FEBS letters》2010,584(21):4383-4388
To decipher the mechanism involved in Grb14 binding to the activated fibroblast growth factor receptor (FGFR), we used the bioluminescence resonance energy transfer (BRET) technique and the Xenopus oocyte model. We showed that Grb14 was recruited to FGFR1 into a trimeric complex containing also phospholipase C gamma (PLCγ). The presence of Grb14 altered FGF-induced PLCγ phosphorylation and activation. Grb14-FGFR interaction involved the Grb14-SH2 domain and the FGFR pY766 residue, which is the PLCγ binding site. Our data led to a molecular model whereby Grb14 binding to the phosphorylated FGFR induces a conformational change that unmasks a PLCγ binding motif on Grb14, allowing trapping and inactivation of PLCγ.
Structured summary
MINT-8019680: Grb14 (uniprotkb:O88900) physically interacts (MI:0915) with FGFR1 (uniprotkb:P11362) by anti tag coimmunoprecipitation (MI:0007)MINT-8019693, MINT-8019727: Grb14 (uniprotkb:O88900) physically interacts (MI:0915) with FGFR1 (uniprotkb:P11362) by bioluminescence resonance energy transfer (MI:0012)MINT-8019714, MINT-8019746: PLC gamma1 (uniprotkb:P19174) physically interacts (MI:0915) with FGFR1 (uniprotkb:P11362) by bioluminescence resonance energy transfer (MI:0012) 相似文献13.
Zhang L Zhou F Drabsch Y Gao R Snaar-Jagalska BE Mickanin C Huang H Sheppard KA Porter JA Lu CX ten Dijke P 《Nature cell biology》2012,14(7):717-726
The stability and membrane localization of the transforming growth factor-β (TGF-β) type I receptor (TβRI) determines the levels of TGF-β signalling. TβRI is targeted for ubiquitylation-mediated degradation by the SMAD7-SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identified ubiquitin-specific protease (USP) 4 as a strong inducer of TGF-β signalling. USP4 was found to directly interact with TβRI and act as a deubiquitylating enzyme, thereby controlling TβRI levels at the plasma membrane. Depletion of USP4 mitigates TGF-β-induced epithelial to mesenchymal transition and metastasis. Importantly, AKT (also known as protein kinase B), which has been associated with poor prognosis in breast cancer, directly associates with and phosphorylates USP4. AKT-mediated phosphorylation relocates nuclear USP4 to the cytoplasm and membrane and is required for maintaining its protein stability. Moreover, AKT-induced breast cancer cell migration was inhibited by USP4 depletion and TβRI kinase inhibition. Our results uncover USP4 as an important determinant for crosstalk between TGF-β and AKT signalling?pathways. 相似文献
14.
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling. 相似文献
15.
Lim S Bae E Kim HS Kim TA Byun K Kim B Hong S Im JP Yun C Lee B Lee B Park SH Letterio J Kim SJ 《PloS one》2012,7(3):e32705
Transforming growth factor-β1 (TGF-β1) is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS) suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII), which is TGF-β-dependent and requires type I TGF-β receptor (TβRI) kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-β signaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression. 相似文献
16.
17.
Blood–brain barrier dysfunction (BBBD) and accumulation of senescent astrocytes occur during brain aging and contribute to neuroinflammation and disease. Here, we explored the relationship between these two age-related events, hypothesizing that chronic hippocampal exposure to the blood-borne protein serum albumin could induce stress-induced premature senescence (SIPS) in astrocytes via transforming growth factor beta 1 (TGFβ) signaling. We found that 1 week of albumin exposure significantly increased TGFβ signaling and senescence marker expression in cultured rat hippocampal astrocytes. These changes were preventable by pharmacological inhibition of the type I TGFβ receptor (TGFβR) ALK5. To study these effects in vivo, we utilized an animal model of BBBD in which albumin was continuously infused into the lateral ventricles of adult mice. Consistent with our in vitro results, 1 week of albumin infusion significantly increased TGFβ signaling activation and the burden of senescent astrocytes in hippocampal tissue. Pharmacological inhibition of ALK5 TGFβR or conditional genetic knockdown of astrocytic TGFβR prior to albumin infusion was sufficient to prevent albumin-induced astrocyte senescence. Together, these results establish a link between TGFβ signaling activation and astrocyte senescence and suggest that prolonged exposure to serum albumin due to BBBD can trigger these phenotypic changes. 相似文献
18.
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions.Aberrant glycosylation can lead to uncontrolled cell proliferation,cell-matrix interactions,migration and differentiation,and has been shown to be involved in cancer and other diseases.The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream.This cellular transformation process,which is associated by morphological change,loss of epithelial traits and gain of mesenchymal markers,is triggered by the secreted cytokine transforming growth factor-β(TGF-β).TGF-βbioactivity is carefully regulated,and its effects on cells are mediated by its receptors on the cell surface.In this review,we first provide a brief overview of major types of glycans,namely,N-glycans,O-glycans,glycosphingolipids and glycosaminoglycans that are involved in cancer progression.Thereafter,we summarize studies on how the glycosylation of TGF-βsignaling components regulates TGF-βsecretion,bioavailability and TGF-βreceptor function.Then,we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer.Identifying and understanding the mechanisms by which glycosylation affects TGF-βsignaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches. 相似文献
19.
Genetic studies in mice and humans have revealed a pivotal function for transforming growth factor-beta (TGF-β) in vascular development and maintenance of vascular homeostasis. Mice deficient for various TGF-β signaling components develop an embryonic lethality due to vascular defects. In patients, mutations in TGF-β receptors have been linked to vascular dysplasia like Hereditary Hemorrhagic Telangiectasia (HHT) and pulmonary arterial hypertension (PAH). Besides indirect effects by regulating the expression of angiogenic regulators, TGF-β also has potent direct effects on endothelial cell growth and migration, and we have proposed that TGF-β regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways, activin receptor-like kinase (ALK)1 and ALK5. TGF-β is also critical for the differentiation of mural precursors into pericytes and smooth muscle cells. Furthermore, defective paracrine TGF-β signaling between endothelial and neighboring mural cells may be responsible for a leaky vessel phenotype that is characteristic of HHT. In this review, we discuss our current understanding of the TGF-β signaling pathway and its regulation of endothelial and vascular smooth muscle cell function. 相似文献
20.
Negative regulation of TGF-β signaling in development 总被引:4,自引:0,他引:4
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development. 相似文献