首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a “super-bulged” viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely “bypassing” the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with “bulged” pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.  相似文献   

2.
Equine herpesvirus-1 (EHV-1), an α-herpesvirus of the family Herpesviridae, causes respiratory disease, abortion, and encephalomyelitis in horses. EHV-1 utilizes equine MHC class I molecules as entry receptors. However, hamster MHC class I molecules on EHV-1-susceptible CHO-K1 cells play no role in EHV-1 entry. To identify the MHC class I molecule region that is responsible for EHV-1 entry, domain exchange and site-directed mutagenesis experiments were performed, in which parts of the extracellular region of hamster MHC class I (clone C5) were replaced with corresponding sequences from equine MHC class I (clone A68). Substitution of alanine for glutamine at position 173 (Q173A) within the α2 domain of the MHC class I molecule enabled hamster MHC class I C5 to mediate EHV-1 entry into cells. Conversely, substitution of glutamine for alanine at position 173 (A173Q) in equine MHC class I A68 resulted in loss of EHV-1 receptor function. Equine MHC class I clone 3.4, which possesses threonine at position 173, was unable to act as an EHV-1 receptor. Substitution of alanine for threonine at position 173 (T173A) enabled MHC class I 3.4 to mediate EHV-1 entry into cells. These results suggest that the amino acid residue at position 173 of the MHC class I molecule is involved in the efficiency of EHV-1 entry.  相似文献   

3.
Altered peptide antigens that enhance T-cell immunogenicity have been used to improve peptide-based vaccination for a range of diseases. Although this strategy can prime T-cell responses of greater magnitude, the efficacy of constituent T-cell clonotypes within the primed population can be poor. To overcome this limitation, we isolated a CD8+ T-cell clone (MEL5) with an enhanced ability to recognize the HLA A*0201-Melan A27–35 (HLA A*0201-AAGIGILTV) antigen expressed on the surface of malignant melanoma cells. We used combinatorial peptide library screening to design an optimal peptide sequence that enhanced functional activation of the MEL5 clone, but not other CD8+ T-cell clones that recognized HLA A*0201-AAGIGILTV poorly. Structural analysis revealed the potential for new contacts between the MEL5 T-cell receptor and the optimized peptide. Furthermore, the optimized peptide was able to prime CD8+ T-cell populations in peripheral blood mononuclear cell isolates from multiple HLA A*0201+ individuals that were capable of efficient HLA A*0201+ melanoma cell destruction. This proof-of-concept study demonstrates that it is possible to design altered peptide antigens for the selection of superior T-cell clonotypes with enhanced antigen recognition properties.  相似文献   

4.
Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1(27-35) tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1(27-35) antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide·MHC complex. These results help explain how the "anchor-fixing" strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.  相似文献   

5.
The main functions of the T-cell receptor (TCR) involve its specific interaction with short and linear antigenic peptides bound to the major histocompatibility complex (MHC) molecules. In the absence of a 3D structure for TCR and for the TCR/peptide/MHC complex, several attempts to characterize the structural components of the TCR/peptide/MHC interaction have been made. However, this subject is still troublesome. In this paper a computer-based 3D model for a TCR/peptide/MHC complex (5C.C7/moth cytochrome c [MCC] peptide 93-103/I-Ek) was obtained. The complex surface shows a high complementarity between the 5C.C7 structure and the peptide/I-Ek molecule. The mapping of residues involved in the TCR/peptide/MHC interaction shows close agreement with mutational experiments (Jorgensen JL, Reay PA, Ehrich EW, Davis MM, 1992b, Annu Rev Immunol 10:835-873). Moreover, the results are consistent with a recent variability analysis of TCR sequences using three variability indexes (Almagro JC, Zenteno-Cuevas R, Vargas-Madrazo E, Lara-Ochoa F, 1995b, Int J Pept Protein Res 45:180-186). Accordingly, the 3D model of the 5C.C7/MCC peptide 93-103/I-Ek complex provides a framework to generate testable hypotheses about TCR recognition. Thus, starting from this model, the role played by each loop that forms the peptide/MHC binding site of the TCR is discussed.  相似文献   

6.
The binding and stabilization capacity of potential T cell epitopes to class I MHC molecules form the basis for their immunogenicity and provide fundamental insight into factors that dictate cellular immune responses. We have developed a versatile high throughput cell-free method to measure MHC stability by capturing a variety of MHC products on the surface of streptavidin-coated particles followed by flow cytometry analysis. Arrays of peptide-MHC combinations, generated by exchanging conditional ligand-loaded MHC, could be probed in a single experiment, thus combining the molecular precision of biochemically purified MHCs with high content multiparametric flow cytometry-based assays. Semiquantitative determination of the peptide affinity for the restriction element could also be accomplished through competition experiments using this bead-based assay. Furthermore, the generated peptide-MHC reagents could directly be applied to antigen-specific CD8(+) T lymphocyte analysis. The combinatorial labeling of beads allowed straightforward identification by their unique fluorescent signatures and provided a convenient means for extended assay multiplexing.  相似文献   

7.
αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short “foreign” peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.  相似文献   

8.
Mutations within T cell epitopes represent a common mechanism of viral escape from the host protective immune response. The diverse T cell repertoire and the extensive human leukocyte antigen (HLA) polymorphism across populations is the evolutionary response to viral mutation. However, the molecular basis underpinning the interplay between HLA polymorphism, the T cell repertoire, and viral escape is unclear. Here we investigate the T cell response to a HLA-B*35:01- and HLA-B*35:08-restricted 407HPVGEADYFEY417 epitope from Epstein-Barr virus and naturally occurring variants at positions 4 and 5 thereof. Each viral variant differently impacted on the epitope''s flexibility and conformation when bound to HLA-B*35:08 or HLA-B*35:01. We provide a molecular basis for understanding how the single residue polymorphism that discriminates between HLA-B*35:01/08 profoundly impacts on T cell receptor recognition. Surprisingly, one viral variant (P5-Glu to P5-Asp) effectively changed restriction preference from HLA-B*35:01 to HLA-B*35:08. Collectively, our study portrays the interplay between the T cell response, viral escape, and HLA polymorphism, whereby HLA polymorphism enables altered presentation of epitopes from different strains of Epstein-Barr virus.  相似文献   

9.
High risk human Papillomavirus (HPV) types are the major causative agents of cervical cancer. Reduced expression of major histocompatibility complex class I (MHC I) on HPV-infected cells might be responsible for insufficient T cell response and contribute to HPV-associated malignancy. The viral gene product required for subversion of MHC I synthesis is the E7 oncoprotein. Although it has been suggested that high and low risk HPVs diverge in their ability to dysregulate MHC I expression, it is not known what sequence determinants of HPV-E7 are responsible for this important functional difference. To investigate this, we analyzed the capability to affect MHC I of a set of chimeric E7 variants containing sequence elements from either high risk HPV16 or low risk HPV11. HPV16-E7, but not HPV11-E7, causes significant diminution of mRNA synthesis and surface presentation of MHC I, which depend on histone deacetylase activity. Our experiments demonstrate that the C-terminal region within the zinc finger domain of HPV-E7 is responsible for the contrasting effects of HPV11- and HPV16-E7 on MHC I. By using different loss- and gain-of-function mutants of HPV11- and HPV16-E7, we identify for the first time a residue variation at position 88 that is highly critical for HPV16-E7-mediated suppression of MHC I. Furthermore, our studies suggest that residues at position 78, 80, and 88 build a minimal functional unit within HPV16-E7 required for binding and histone deacetylase recruitment to the MHC I promoter. Taken together, our data provide new insights into how high risk HPV16-E7 dysregulates MHC I for immune evasion.  相似文献   

10.
11.
12.
Between days 36-38 of pregnancy equine trophoblastic cells of the chorionic girdle migrate and form endometrial cups. Just prior to invasion, the chorionic girdle cells express high levels of polymorphic, paternally inherited, major histocompatibility complex (MHC) class I antigens. Their descendents, the mature, invasive trophoblast cells of the endometrial cups, however, express low or undetectable levels of MHC class I antigens by day 44 of pregnancy. Experiments with MHC compatible pregnancies, the study of residual chorionic girdle cells that had failed to invade the endometrium and remained on the surface of a conceptus, and the study of chorionic girdle cells recovered on days 34-36 of pregnancy and then maintained in vitro for up to 24 days strongly suggest that the reduction of MHC class I antigen expression by mature invasive trophoblast cells of the endometrial cups is developmentally regulated. This phenomenon does not appear to be induced by a maternal antibody response or by other uterine factors acting after the chorionic girdle trophoblast cells invade the endometrium.  相似文献   

13.
14.
MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.  相似文献   

15.
MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.  相似文献   

16.
The T cell receptor (TCR) orchestrates immune responses by binding to foreign peptides presented at the cell surface in the context of major histocompatibility complex (MHC) molecules. Effective immunity requires that all possible foreign peptide-MHC molecules are recognized or risks leaving holes in immune coverage that pathogens could quickly evolve to exploit. It is unclear how a limited pool of <10(8) human TCRs can successfully provide immunity to the vast array of possible different peptides that could be produced from 20 proteogenic amino acids and presented by self-MHC molecules (>10(15) distinct peptide-MHCs). One possibility is that T cell immunity incorporates an extremely high level of receptor degeneracy, enabling each TCR to recognize multiple peptides. However, the extent of such TCR degeneracy has never been fully quantified. Here, we perform a comprehensive experimental and mathematical analysis to reveal that a single patient-derived autoimmune CD8(+) T cell clone of pathogenic relevance in human type I diabetes recognizes >one million distinct decamer peptides in the context of a single MHC class I molecule. A large number of peptides that acted as substantially better agonists than the wild-type "index" preproinsulin-derived peptide (ALWGPDPAAA) were identified. The RQFGPDFPTI peptide (sampled from >10(8) peptides) was >100-fold more potent than the index peptide despite differing from this sequence at 7 of 10 positions. Quantification of this previously unappreciated high level of CD8(+) T cell cross-reactivity represents an important step toward understanding the system requirements for adaptive immunity and highlights the enormous potential of TCR degeneracy to be the causative factor in autoimmune disease.  相似文献   

17.
Summary Patterns of nucleotide substitutions in human major histocompatibility complex (MHC) class I genes were estimated by using phylogenetic trees of DNA sequences. The pattern is defined as a set of 12 parameters, each of which represents the relative frequency of substitutions from a particular nucleotide to another. The pattern at the antigen recognition sites (ARS) in functional MHC genes was remarkably different from that at the remaining coding region (non-ARS). In particular, the proportion of transitions among all the nucleotide substitutions (P s) was extremely low at the third codon positions of ARS. In the HLA-A genes, P s at the third codon positions was only 6% in ARS, whereas it was 69% in non-ARS. In HLA-B, the corresponding values were 30% in ARS and 80% in non-ARS, respectively. On the other hand, P s in a class I pseudogene (HLA-H) was 57%, which was in good agreement with P s in other pseudogenes. Because pseudogenes are selectively neutral, the pattern in pseudogenes is regarded as the pattern of spontaneous substitution mutations. In general, the pattern in functional genes that are subject to selective forces deviates from the pattern in pseudogenes. At the third codon positions in coding regions, transitions scarcely cause amino acid replacements, whereas about half of transversions do cause replacements. Accordingly, P s at the third codon positions decreases if amino acid replacements are accelerated by natural selection but increases if amino acids are conserved by functional constraint. Our observations imply that the ARS region is subject to natural selection favoring amino acid replacements, whereas the non-ARS region is subject to functional constraint. Offprint requests to: T. Gojobori  相似文献   

18.
Binding of class I MHC molecules (MHCI) to an inhibitory receptor, PIR-B, expressed on B cells and myeloid cells provides constitutive cellular inhibition, thus ensuring peripheral tolerance. Recent unexpected findings pointed to a novel inhibitory role of PIR-B in neurite regeneration through binding to three axonal outgrowth inhibitors of myelin, including Nogo. Thus, it becomes interesting to determine whether the actions of the inhibitory myelin proteins and MHCI could coexist independently or be mutually exclusive as to the PIR-B-mediated immune and neural cell inhibition. Here, we present data supporting the competition of Nogo- and MHCI-mediated inhibition where they coexist. Kinetic analyses of Nogo and MHCI binding to the whole or a part of the recombinant PIR-B ectodomain revealed that PIR-B binds with higher affinity to Nogo than MHCI and that the MHCI binding only occurred with the N-terminal domains of PIR-B, whereas Nogo binding occurred with either the N- or C-terminal ectodomains. Importantly, kinetic tests indicated that the binding to PIR-B of Nogo and MHCI was competitive. Both endogenous and exogenous Nogo intensified the PIR-B-mediated suppression of interleukin-6 release from lipopolysaccharide-stimulated wild-type, but not PIR-B-deficient, cultured mast cells, indicating that PIR-B mediates Nogo-induced inhibition. Thus, we propose a novel mechanism by which PIR-B-mediated regulation is achieved differentially but competitively via MHCI and Nogo in cells of the immune system.  相似文献   

19.
Although HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased T-cell response. Only the N-terminal face of the peptide bulge was critical for recognition by the dominant clonotype SB27. The SB27 public T-cell receptor (TcR) associated slowly onto the complex between the bulged peptide and the major histocompatibility complex, suggesting significant remodeling upon engagement. The broad antigen-binding cleft of HLA-B*3508 represents a critical feature for engagement of the public TcR, as the narrower binding cleft of HLA-B*3501(LPEPLPQGQLTAY), which differs from HLA-B*3508 by a single amino acid polymorphism (Arg156 --> Leu), interacted poorly with the dominant TcR. Biased TcR usage in this cytotoxic T lymphocyte response appears to reflect a dominant role of the prominent peptide x major histocompatibility complex class I surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号