首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ras GTPases are on/off switches regulating numerous cellular responses by signaling to various effector molecules. In T lymphocytes, Ras can be activated by two Ras exchange factors, SOS and RasGRP1, which are recruited through the adapters Grb2 and LAT and via the second-messenger diacylglycerol (DAG), respectively. Mitogen-activated protein (MAP) kinase phosphorylation patterns induced by active Ras can vary and contribute to distinct cellular responses. The different consequences of Ras activation by either guanine exchange factor are unknown. DAG also recruits and activates the kinase protein kinase Ctheta (PKCtheta) turning on the Erk MAP kinase pathway, but the biochemical mechanism responsible is unclear. We generated T-cell clones deficient in phorbol myristate acetate (a surrogate for DAG)-induced Ras activation. Analysis of a RasGRP1-deficient Jurkat T-cell clone and RasGRP1 RNA interference in wild-type cells revealed that RasGRP1 is required for optimal, antigen receptor-triggered Ras-Erk activation. RasGRP1 relies on its DAG-binding domain to selectively activate Erk kinases. Activation of Erk correlates with the phosphorylation of threonine residue 184 in RasGRP1. This phosphorylation event requires the activities of novel PKC kinases. Conversely, active PKCtheta depends on RasGRP1 sufficiency to effectively trigger downstream events. Last, DAG-PKC-RasGRP1-driven Ras-Erk activation in T cells is a unique signaling event, not simply compensated for by SOS activity.  相似文献   

2.
Thymocytes must transit at least two distinct developmental checkpoints, governed by signals that emanate from either the pre-T cell receptor (pre-TCR) or the TCR to the small G protein Ras before emerging as functional T lymphocytes. Recent studies have shown a role for the Ras guanine exchange factor (RasGEF) Sos1 at the pre-TCR checkpoint. At the second checkpoint, the quality of signaling through the TCR is interrogated to ensure the production of an appropriate T cell repertoire. Although RasGRP1 is the only confirmed RasGEF required at the TCR checkpoint, current models suggest that the intensity and character of Ras activation, facilitated by both Sos and RasGRP1, will govern the boundary between survival (positive selection) and death (negative selection) at this stage. Using mouse models, we have assessed the independent and combined roles for the RasGEFs Sos1, Sos2, and RasGRP1 during thymocyte development. Although Sos1 was the dominant RasGEF at the pre-TCR checkpoint, combined Sos1/RasGRP1 deletion was required to effectively block development at this stage. Conversely, while RasGRP1 deletion efficiently blocked positive selection, combined RasGRP1/Sos1 deletion was required to block negative selection. This functional redundancy in RasGEFs during negative selection may act as a failsafe mechanism ensuring appropriate central tolerance.  相似文献   

3.
Immunoglobulin E (IgE) induces mast cell survival in the absence of antigen (Ag) through the high-affinity IgE receptor, Fcepsilon receptor I (FcepsilonRI). Although we have shown that protein tyrosine kinase Syk and sustained extracellular signal-regulated kinase (Erk) activation are required for IgE-induced mast cell survival, how Syk couples with sustained Erk activation is still unclear. Here, we report that the transmembrane adaptors LAT and NTAL are phosphorylated slowly upon IgE stimulation and that sustained but not transient Erk activation induced by IgE was inhibited in LAT(-/-) NTAL(-/-) bone marrow-derived mast cells (BMMCs). IgE-induced survival requires Ras activation, and both were impaired in LAT(-/-) NTAL(-/-) BMMCs. Sos was preferentially required for FcepsilonRI signals by IgE rather than IgE plus Ag. Survival impaired in LAT(-/-) NTAL(-/-) BMMCs was restored to levels comparable to those of the wild type by membrane-targeted Sos, which bypasses the Grb2-mediated membrane recruitment of Sos. The IgE-induced survival of BMMCs lacking Gads, an adaptor critical for the formation of the LAT-SLP-76-phospholipase Cgamma (PLCgamma) complex, was observed to be normal. IgE stimulation induced the membrane retention of Grb2-green fluorescent protein fusion proteins in wild-type but not LAT(-/-) NTAL(-/-) BMMCs. These results suggest that LAT and NTAL contribute to the maintenance of Erk activation and survival through the membrane retention of the Ras-activating complex Grb2-Sos and, further, that the LAT-Gads-SLP-76-PLCgamma and LAT/NTAL-Grb2-Sos pathways are differentially required for degranulation and survival, respectively.  相似文献   

4.
The linker for activation of T cells (LAT) is a critical adaptor molecule required for T cell antigen receptor (TCR)-mediated signaling and thymocyte development. Upon T cell activation, LAT becomes highly phosphorylated on tyrosine residues, and Grb2, Gads, and phospholipase C (PLC)-gamma1 bind LAT via Src homology-2 domains. In LAT-deficient mutant Jurkat cells, TCR engagement fails to induce ERK activation, Ca(2+) flux, and activation of AP-1 and NF-AT. We mapped the tyrosine residues in LAT responsible for interaction with these specific signaling molecules by expressing LAT mutants with tyrosine to phenylalanine mutations in LAT-deficient cells. Our results showed that three distal tyrosines, Tyr(171), Tyr(191), and Tyr(226), are responsible for Grb2-binding; Tyr(171), and Tyr(191), but not Tyr(226), are necessary for Gads binding. Mutation of Tyr(132) alone abolished PLC-gamma1 binding. Mutation of all three distal tyrosines also abolished PLC-gamma1 binding, suggesting there might be multiple binding sites for PLC-gamma1. Mutation of Tyr(132) affected calcium flux and blocked Erk and NF-AT activation. Since Grb2 binding is not affected by this mutation, these results strongly suggest that PLC-gamma activation regulates Ras activation in these cells. Mutation of individual Grb2 binding sites had no functional effect, but mutation of two or three of these sites, in combination, also affected Erk and NF-AT activation.  相似文献   

5.
γδ T (γδT) cells belong to a distinct T cell lineage that performs immune functions different from αβ T (αβT) cells. Previous studies established that Erk1/2 MAPKs are critical for positive selection of αβT cells. Additional evidence suggests that increased Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide-releasing factor for Ras, plays an important role in positive selection of αβT cells by activating the Ras-Erk1/2 pathway. In this article, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells, but it exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus, but it leads to increased γδT cells, particularly CD4(-)CD8(+) γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1(-/-) thymus proved to be cell intrinsic, whereas the increase in CD8(+) γδT cells is caused by non-cell-intrinsic mechanisms. Our data provide genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible with γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations revealed that RasGRP1 plays differential roles for γδ and αβ T cell development but is critical for γδT cell proliferation and production of IL-17.  相似文献   

6.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

7.
8.
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development.  相似文献   

9.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

10.
The RasGRPs are a family of Ras activators that possess diacylglycerol-binding C1 domains. In T cells, RasGRP1 links TCR signaling to Ras. B cells coexpress RasGRP1 and RasGRP3. Using Rasgrp1 and Rasgrp3 single and double null mutant mice, we analyzed the role of these proteins in signaling to Ras and Erk in B cells. RasGRP1 and RasGRP3 both contribute to BCR-induced Ras activation, although RasGRP3 alone is responsible for maintaining basal Ras-GTP levels in unstimulated cells. Surprisingly, RasGRP-mediated Ras activation is not essential for B cell development because this process occurs normally in double-mutant mice. However, RasGRP-deficient mice do exhibit humoral defects. Loss of RasGRP3 led to isotype-specific deficiencies in Ab induction in immunized young mice. As reported previously, older Rasgrp1-/- mice develop splenomegaly and antinuclear Abs as a result of a T cell defect. We find that such mice have elevated serum Ig levels of several isotypes. In contrast, Rasgrp3-/- mice exhibit hypogammaglobulinemia and show no signs of splenomegaly or autoimmunity. Double-mutant mice exhibit intermediate serum Ab titers, albeit higher than wild-type mice. Remarkably, double-mutant mice exhibit no signs of autoimmunity or splenomegaly. B cell proliferation induced by BCR ligation with or without IL-4 was found to be RasGRP1- and RasGRP3-dependent. However, the RasGRPs are not required for B cell proliferation per se, because LPS-induced proliferation is unaffected in double-mutant mice.  相似文献   

11.
Ras activation as a consequence of antigen receptor (T-cell receptor; TCR) engagement on T lymphocytes is required for T-cell development, selection and function. Lymphocyte function-associated antigen-1 (LFA-1) mediates lymphocyte adhesion, stabilization of the immune synapse and bidirectional signalling. Using a fluorescent biosensor we found that TCR activation with or without costimulation of CD28 led to activation of Ras only on the Golgi apparatus, whereas costimulation with LFA-1 induced Ras activation on both the Golgi and the plasma membrane. Ras activation on both compartments required RasGRP1, an exchange factor regulated by calcium and diacylglycerol (DAG), but phospholipase C (PLC) activity was required only for activation on the Golgi. Engagement of LFA-1 increased DAG levels at the plasma membrane by stimulating phospholipase D (PLD). PLD2 and phosphatidic acid phosphatase (PAP) were required for Ras activation on the plasma membrane. Thus, LFA-1 acts through PLD2 to reshape the pattern of Ras activation downstream of the TCR.  相似文献   

12.
We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2(Delta46-110). To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2(Delta46-110) molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment.  相似文献   

13.
Vav1 is a signaling protein required for both positive and negative selection of CD4(+)CD8(+) double positive thymocytes. Activation of the ERK MAPK pathway is also required for positive selection. Previous work has shown that Vav1 transduces T cell receptor (TCR) signals leading to an intracellular calcium flux. We now show that in double positive thymocytes Vav1 is required for TCR-induced activation of the ERK1 and ERK2 kinases via a pathway involving the Ras GTPase, and B-Raf, MEK1, and MEK2 kinases. Furthermore, we show that Vav1 transduces TCR signals to Ras by controlling the membrane recruitment of two guanine nucleotide exchange factors. First, Vav1 transduces signals via phospholipase Cgamma1 leading to the membrane recruitment of RasGRP1. Second, Vav1 is required for recruitment of Sos1 and -2 to the transmembrane adapter protein LAT. Finally, we show that Vav1 is required for TCR-induced LAT phosphorylation, a key event for the activation of both phospholipase Cgamma1 and Sos1/2. We propose that reduced LAT phosphorylation is the key reason for defective TCR-induced calcium flux and ERK activation in Vav1-deficient cells.  相似文献   

14.
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.  相似文献   

15.
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2–SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.  相似文献   

16.
The two SH3 domains and one SH2 domain containing adaptor protein Grb2 is an essential element of the Ras signaling pathway in multiple systems. The SH2 domain of Grb2 recognizes and interacts with phosphotyrosine residues on activated tyrosine kinases, whereas the SH3 domains bind to several proline-rich domain-containing proteins such as Sos1. To define the difference in Grb2-associated proteins in hepatocarcinoma cells, we performed coprecipitation analysis using recombinant GST-Grb2 fusion proteins and found that several protein components (p170, p125, p100, and p80) differently associated with GST-Grb2 proteins in human Chang liver and hepatocarcinoma HepG2 cells. Sos1 and p80 proteins dominantly bind to Grb2 fusion proteins in Chang liver, whereas p100 remarkably associate with Grb2 in HepG2 cells. Also GST-Grb2 SH2 proteins exclusively bound to the p46(Shc), p52(Shc), and p66(Shc) are important adaptors of the Ras pathway in HepG2 cells. The p100 protein has been identified as dynamin II. We observed that the N-SH3 and C-SH3 domains of Grb2 fusion proteins coprecipitated with dynamin II besides Sos1. These results suggest that dynamin II may be a functional molecule involved in Grb2-mediated signaling pathway on Ras activation for tumor progression and differentiation of hepatocarcinoma cells.  相似文献   

17.
T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. We report here that in cultured Jurkat T cells, Cbl is coprecipitated with antibody against the adapter protein Grb2. Upon activation of Jurkat T cells via the TCR-CD3 complex, we find that high-affinity binding of Cbl requires the N-terminal SH3 domain of GST-Grb2 fusion protein but after cross-linking of the TCR-CD3 and CD4 receptors, Cbl binds equally to its SH2 domain. Grb2 antisera also precipitated p85 from serum-starved cells, while TCR activation increased p85 and tyrosine-phosphorylated Cbl but not Cbl protein in Grb2 immunocomplexes. Phosphatidylinositol (PI) 3-kinase activity was immunoprecipitated from serum-starved cells with Cbl and to a lesser extent with Grb2 antisera, and TCR cross-linking increased this activity severalfold. The PI 3-kinase activity associated with Cbl amounted to 5 to 10% of the total cellular activity that could be precipitated by p85 antisera. The Ras exchange factor Son-of-sevenless 1 (Sos-1) was not found in anti-Cbl immunoprecipitates from activated cells, and Cbl was not detectable in anti-Sos-1 precipitates, supporting the likelihood that Sos-Grb2 and Cbl-Grb2 are present as distinct complexes. Taken together, these data suggest that Cbl function in Jurkat T cells involves its constitutive association with Grb2 and its recruitment of PI 3-kinase in response to TCR activation.  相似文献   

18.
The epidermal growth factor (EGF) receptor has been suggested to have an important role in tumor initiation and progression of human bladder cancers. Grb2 protein, which is the downstream effector of the EGF receptor, acts as an adaptor protein between the EGF receptor and the Ras guanine-nucleotide exchange factor, son of sevenless (Sos) protein. Sos protein regulates the action of Ras protein by promoting the exchange of GDP for GTP. However, the significance of Grb2 and Sos proteins, which is related to EGF-triggered Ras activation, has not been elucidated in human bladder cancer. The aim of the present study is to clarify the significance of these proteins in human bladder cancer cell lines. In the present study, we used four human bladder cancer cell lines (T24, KU-7, UMUC-2, UMUC-6) and two kinds of cultured normal urothelial cells (HMKU-1, HMKU-2) isolated from patients with no malignancy. We examined the expression of EGF receptor, Grb2, and Sos proteins in these cells by Western blot analysis. Furthermore, the bladder cancer cell lines were subjected to sequence analysis to identify a point mutation in the c-H-ras gene at codon 12. There was no marked difference in the expression of the EGF receptor between human bladder cancer cell lines and cultured normal urothelial cells. On the other hand, expression of Grb2 and Sos proteins was substantially increased in all human bladder cancer cell lines examined in comparison with cultured normal urothelial cells, whether codon 12 of H-ras was mutated or not. These results suggest that the amplification of both Grb2 and SOS proteins plays an important role in the carcinogenesis of human bladder cancer.  相似文献   

19.
Interaction of Shc with Grb2 regulates association of Grb2 with mSOS.   总被引:13,自引:5,他引:8       下载免费PDF全文
The adapter protein Shc has been implicated in Ras signaling via many receptors, including the T-cell antigen receptor (TCR), B-cell antigen receptor, interleukin-2 receptor, interleukin-3 receptor, erythropoietin receptor, and insulin receptor. Moreover, transformation via polyomavirus middle T antigen is dependent on its interaction with Shc and Shc tyrosine phosphorylation. One of the mechanisms of TCR-mediated, tyrosine kinase-dependent Ras activation involves the simultaneous interaction of phosphorylated Shc with the TCR zeta chain and with a second adapter protein, Grb2. Grb2, in turn, interacts with the Ras guanine nucleotide exchange factor mSOS, thereby leading to Ras activation. Although it has been reported that in fibroblasts Grb2 and mSOS constitutively associate with each other and that growth factor stimulation does not alter the levels of Grb2:mSOS association, we show here that TCR stimulation leads to a significant increase in the levels of Grb2 associated with mSOS. This enhanced Grb2:mSOS association, which occurs through an SH3-proline-rich sequence interaction, is regulated through the SH2 domain of Grb2. The following observations support a role for Shc in regulating the Grb2:mSOS association: (i) a phosphopeptide corresponding to the sequence surrounding Tyr-317 of Shc, which displaces Shc from Grb2, abolished the enhanced association between Grb2 and mSOS; and (ii) addition of phosphorylated Shc to unactivated T cell lysates was sufficient to enhance the interaction of Grb2 with mSOS. Furthermore, using fusion proteins encoding different domains of Shc, we show that the collagen homology domain of Shc (which includes the Tyr-317 site) can mediate this effect. Thus, the Shc-mediated regulation of Grb2:mSOS association may provide a means for controlling the extent of Ras activation following receptor stimulation.  相似文献   

20.
Sprouty was genetically identified as an antagonist of fibroblast growth factor signaling during tracheal branching in Drosophila. In this study, we provide a functional characterization of mammalian Sprouty1 and Sprouty2. Sprouty1 and Sprouty2 inhibited events downstream of multiple receptor tyrosine kinases and regulated both cell proliferation and differentiation. Using NIH3T3 cell lines conditionally expressing Sprouty1 or Sprouty2, we found that these proteins specifically inhibit the Ras/Raf/MAP kinase pathway by preventing Ras activation. In contrast, activation of the phosphatidylinositol 3-kinase pathway was not affected by Sprouty1 or Sprouty2. We further showed that Sprouty1 and Sprouty2 do no prevent the formation of a SNT.Grb2.Sos complex upon fibroblast growth factor stimulation, yet block Ras activation. Taken together, these results establish mammalian Sprouty proteins as important negative regulators of growth factor signaling and suggest that Sprouty proteins act downstream of the Grb2.Sos complex to selectively uncouple growth factor signals from Ras activation and the MAP Kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号