首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Identification of proteins bearing a specific post-translational modification would imply functions of the modification. Proteomic analysis of post-translationally modified proteins is usually challenging due to high complexity and wide dynamic range, as well as unavailability of efficient methods to enrich the proteins of interest. Here, we report a strategy for the detection, isolation, and profiling of O-linked N-acetylglucosamine (O-GlcNAc) modified proteins, which involves three steps: metabolic labeling of cells with an unnatural GlcNAc analogue, peracetylated azido-GlcNAc; chemoselective conjugation of azido-GlcNAc modified proteins via the Staudinger ligation, which is specific between phosphine and azide, using a biotinylated phosphine capture reagent; and detection and affinity purification of the resulting conjugated O-GlcNAc modified proteins. Since the approach relies on a tag (azide) in the substrate, we designated it the tagging-via-substrate (TAS) strategy. A similar strategy was used previously for protein farnesylation, phosphorylation, and sumoylation. Using this approach, we were able to specifically label and subsequently detect azido-GlcNAc modified proteins from the cytosolic lysates of HeLa, 3T3, COS-1, and S2 cell lines, suggesting the azido-substrate could be tolerated by the enzymatic systems among these cells from diverse biological species. We isolated azido-GlcNAc modified proteins from the cytosolic extract of S2 cells and identified 10 previously reported and 41 putative O-GlcNAc modified proteins, by nano-HPLC-MS/MS. Our study demonstrates that the TAS approach is a useful tool for the detection and proteomic analysis of O-GlcNAc modified proteins.  相似文献   

4.
Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined ‘variable sequencing’, which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing.  相似文献   

5.
The naturally occurring nucleotide 3-(3-amino-3-carboxy-propyl) uridine ("acp3U") at position 20:1 of lupin tRNAMet was coupled to a photoreactive diazirine derivative. Similarly, the 4-thiouridine at position 8 of Escherichia coli tRNAPhe was modified with an aromatic azide. Each of the derivatized tRNAs was bound to E. coli ribosomes in the presence of suitable mRNA analogues, under conditions specific for the A, P, or E sites. After photoactivation of the diazirine or azide groups, the sites of crosslinking from the tRNAs to 16S or 23S rRNA were analyzed by our standard procedures, involving a combination of ribonuclease H digestion and primer extension analysis. The crosslinked ribosomal proteins were also identified. The results for the rRNA showed a well-defined series of crosslinks to both the 16S and 23S molecules, the most pronounced being (1) an entirely A-site-specific crosslink from tRNA position 20:1 to the loop-end region (nt 877-913) of helix 38 of the 23S RNA (a region that has not so far been associated at all with tRNA binding), and (2) a largely P-site-specific crosslink from tRNA position 8 to nt 2111-2112 of the 23S RNA (nt 2112 being a position that has previously been identified in footprinting studies as belonging to the ribosomal E site). The data are compared with results from a parallel study of crosslinks from position 47 (also in the central fold of the tRNA), as well as with previously published crosslinks from the anticodon loop (positions 32, 34, and 37) and the CCA-end region (position 76, and the aminoacyl residue).  相似文献   

6.
Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253–302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with the human 40S ribosomal subunit. For this purpose, two RNA derivatives were used that bore a photoactivatable perfluorophenyl azide cross-linker. In one derivative the cross-linker was at the nucleotide A296 in hairpin IIIe, and in the other at G87 in domain II. Site-specific introduction of the cross-linker was performed using alkylating derivatives of oligodeoxyribonucleotides complementary to the target RNA sequences. No cross-links with the rRNA were detected with either RNA derivative. The RNA with the photoactivatable group at A296 cross-linked to proteins identified as S5 and S16 (major) and p40 and S3a (minor), while no cross-links with proteins were detected with RNA modified at G87. The results obtained indicate that hairpin IIIe is located on the solvent side of the 40S subunit head on a site opposite the beak.  相似文献   

7.
We have developed a reduction-triggered fluorescence probe with a new fluorogenic compound derivatized from Rhodamine for sensing oligonucleotides. The chemistry to activate the compound involves the reaction between the azide group of rhodamine derivatives and the reducing reagents, with the fluorescence signal appearing after reduction of the azide group. The signal/background ratio of this fluorogenic compound reached 2100-fold enhancement in fluorescence intensity. Dithio-1,4-threitol or triphenylphosphine as reducing reagents were successfully utilized for this chemistry to be introduced into the DNA probe. The genetic detection requires that two strands of DNA bind onto target oligonucleotides, one probe carrying a reducible fluorogenic compound while the other carries the reducing reagents. The reaction proceeds automatically without any enzymes or reagents under biological conditions to produce a fluorescence signal within 10-20 min in the presence of target DNA or RNA. In addition, the probe was very stable under biological conditions, even such extreme conditions as pH 5 solution, pH 10 solution, or high temperature (90 degrees C) with no undesirable background signal. The probes were successfully applied to the detection of oligonucleotides at the single nucleotide level in solution and endogenous RNA in bacterial cells.  相似文献   

8.
Detection and quantitation of RNA base modifications   总被引:3,自引:1,他引:2       下载免费PDF全文
Zhao X  Yu YT 《RNA (New York, N.Y.)》2004,10(6):996-1002
  相似文献   

9.
RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates and inhibits the function of the translation initiation factor eIF-2. PKR is activated in vitro by binding RNA molecules with extensive duplex structure. To further define the nature of the RNA regulation of PKR, we have prepared and characterized site-specifically modified proteins consisting of the PKR 20 kDa RNA-binding domain (RBD). Here we show that the two cysteines found naturally in this domain can be altered by site-directed mutagenesis without loss of RNA binding affinity or the RNA-regulated kinase activity. Introduction of cysteine residues at other sites in the PKR RBD allows for site-specific modification with thiol-selective reagents. PKR RBD mutants reacted selectively with a maleimide to introduce a photoactivatable crosslinking aryl azide at three different positions in the protein. RNA crosslinking efficiency was found to be dependent on the amino acid modified, suggesting differences in access to the RNA from these positions in the protein. One of the amino acid modifications that led to crosslinking of the RNA is located at a residue known to be an autophosphorylation site, suggesting that autophosphorylation at this site could influence the RNA binding properties of PKR. The PKR RBD conjugates described here and other similar reagents prepared via these methods are applicable to future studies of PKR–RNA complexes using techniques such as photocrosslinking, fluorescence resonance energy transfer and affinity cleaving.  相似文献   

10.
This report describes and compares different strategies to deactivate (endcap) epoxide groups and azide groups on bio-chromatographic support surfaces, before and after ligand attachment. Adsorbents possessing epoxide groups were deactivated using acidic hydrolysis or were endcapped with 2-mercaptoethanol or 2-ethanolamine. The influence of surface-bound 2-ethanolamine was demonstrated for the triazine-type affinity adsorbent B14-2LP-FractoAIMs-1, which was tested in combination with the weak anion exchange material 3-aminoquinuclidine-FractoAIMs-3 (AQ-FA3). Azide groups were modified with 2-propargylalcohol using Click-Chemistry. Besides the conventional one-pot Click reaction, an alternative approach was introduced. This optimized Click protocol was employed (i) for the preparation of the weak anion exchange material AdQ-triazole-Fractogel (AdQ-TRZ-FG) and (ii) for the endcapping of residual azide groups with 3-propargyl alcohol. Using the new Click reaction protocol the ligand immobilization rate was doubled from 250 to 500 μmol/g dry adsorbent. Furthermore, the modified support surface was proven to be inert towards the binding of immunoglobulin G (IgG) as well as feed impurities. A thorough evaluation of modified surfaces and adsorbents was performed with dynamic binding experiments using cell culture supernatant containing monoclonal human immunoglobulin G (h-IgG-1). Besides SDS-Page, a recently introduced Protein A-size exclusion HPLC method (PSEC-HPLC) was used to visualize the feed impurity composition and the IgG content of all collected sample fractions in simple PSEC-Plots. A surprising outcome of this study was the irreversible binding of IgG to azide modified surfaces. It was found that organic azide compounds, e.g. 1-azide-3-(2-propen-1-yloxy)-2-propanol (AGE-N3) promote antibody aggregation to a slightly higher extent than the inorganic sodium azide. The possibility that the Hofmeister Series of salt anions may be applicable to predict the properties of the corresponding organic compounds is discussed.  相似文献   

11.
12.
The RNase H cleavage potential of the RNA strand basepaired with the complementary antisense oligonucleotides (AONs) containing North-East conformationally constrained 1',2'-methylene-bridged (azetidine-T and oxetane-T) nucleosides, North-constrained 2',4'-ethylene-bridged (aza-ENA-T) nucleoside, and 2'-alkoxy modified nucleosides (2'-O-Me-T and 2'-O-MOE-T modifications) have been evaluated and compared under identical conditions. When compared to the native AON, the aza-ENA-T modified AON/RNA hybrid duplexes showed an increase of melting temperature (DeltaTm = 2.5-4 degrees C per modification), depending on the positions of the modified residues. The azetidine-T modified AONs showed a drop of 4-5.5 degrees C per modification with respect to the native AON/RNA hybrid, whereas the isosequential oxetane-T modified counterpart, showed a drop of approximately 5-6 degrees C per modification. The 2'-O-Me-T and 2'-O-MOE-T modifications, on the other hand, showed an increased of Tm by 0.5 C per modification in their AON/RNA hybrids. All of the partially modified AON/RNA hybrid duplexes were found to be good substrates for the RNase H mediated cleavage. The Km and Vmax values obtained from the RNA concentration-dependent kinetics of RNase H promoted cleavage reaction for all AON/RNA duplexes with identical modification site were compared with those of the reference native AON/RNA hybrid duplex. The catalytic activities (Kcat) of RNase H were found to be greater (approximately 1.4-2.6-fold) for all modified AON/RNA hybrids compared to those for the native AON/RNA duplex. However, the RNase H binding affinity (1/Km) showed a decrease (approximately 1.7-8.3-fold) for all modified AON/RNA hybrids. This resulted in less effective (approximately 1.1-3.2-fold) enzyme activity (Kcat/Km) for all modified AON/RNA duplexes with respect to the native counterpart. A stretch of five to seven nucleotides in the RNA strand (from the site of modifications in the complementary modified AON strand) was found to be resistant to RNase H digestion (giving a footprint) in the modified AON/RNA duplex. Thus, (i) the AON modification with azetidine-T created a resistant region of five to six nucleotides, (ii) modification with 2'-O-Me-T created a resistant stretch of six nucleotides, (iii) modification with aza-ENA-T created a resistant region of five to seven nucleotide residues, whereas (iv) modification with 2'-O-MOE-T created a resistant stretch of seven nucleotide residues. This shows the variable effect of the microstructure perturbation in the modified AON/RNA heteroduplex depending upon the chemical nature as well as the site of modifications in the AON strand. On the other hand, the enhanced blood serum as well as the 3'-exonuclease stability (using snake venom phosphodiesterase, SVPDE) showed the effect of the tight conformational constraint in the AON with aza-ENA-T modifications in that the 3'-exonuclease preferentially hydrolyzed the 3'-phosphodiester bond one nucleotide away (n + 1) from the modification site (n) compared to all other modified AONs, which were 3'-exonuclease cleaved at the 3'-phosphodiester of the modification site (n). The aza-ENA-T modification in the AONs made the 5'-residual oligonucleotides (including the n + 1 nucleotide) highly resistant in the blood serum (remaining after 48 h) compared to the native AON (fully degraded in 2 h). On the other hand, the 5'-residual oligonucleotides (including the n nucleotide) in azetidine-T, 2'-O-Me-T, and 2'-O-MOE-T modified AONs were more stable compared to that of the native counterpart but more easily degradable than that of aza-ENA-T containing AONs.  相似文献   

13.
Cytoplasmic poly A(+) RNA from human prostatic cancer cells grown in the presence of 32P was isolated by affinity chromatography on columns of oligo(dT)-cellulose. The RNA was digested with RNAase T2 and the products of digestion were fractionated by two-dimensional electrophoresis. The resulting autoradiograms revealed the presence of many different cap groups as well as two internal modified nucleotide components. 19 different type 1 and type 2 'cap' groups were identified. The internal modified nucleotides were N6-methyl adenosine and a 2'-O-methyl nucleotide possessing an unusual modified base.  相似文献   

14.
15.
Cell surface ATPases (ecto-ATPases or E-ATPases) hydrolyze extracellular ATP and other nucleotides. Regulation of extracellular nucleotide concentration is one of their major proposed functions. Based on enzymatic characterization, the E-ATPases have been divided into two subfamilies, ecto-ATPases and ecto-ATP-diphosphohydrolases (ecto-ATPDases). In the presence of either Mg2+ or Ca2+, ecto-ATPDases, including proteins closely related to CD39, hydrolyze nucleoside diphosphates in addition to nucleoside triphosphates and are inhibited by millimolar concentrations of azide, whereas ecto-ATPases appear to lack these two properties. This report presents the first systematic kinetic study of a purified ecto-ATPDase, the chicken oviduct ecto-ATPDase (Strobel, R.S., Nagy, A.K., Knowles, A.F., Buegel, J. & Rosenberg, M.O. (1996) J. Biol. Chem. 271, 16323-16331), with respect to ATP and ADP, and azide inhibition. Km values for ATP obtained at pH 6.4 and 7.4 are 10-30 times lower than for ADP and the catalytic efficiency is greater with ATP as the substrate. The enzyme also exhibits complicated behavior toward azide. Variable inhibition by azide is observed depending on nucleotide substrate, divalent ion, and pH. Nearly complete inhibition by 5 mm azide is obtained when MgADP is the substrate and when assays are conducted at pH 6-6.4. Azide inhibition diminishes when ATP is the substrate, Ca2+ as the activating ion, and at higher pH. The greater efficacy of azide in inhibiting ADP hydrolysis compared to ATP hydrolysis may be related to the different modes of inhibition with the two nucleotide substrates. While azide decreases both Vmax and Km for ADP, it does not alter the Km for ATP. These results suggest that the apparent affinity of azide for the E.ADP complex is significantly greater than that for the free enzyme or E.ATP. The response of the enzyme to three other inhibitors, fluoride, vanadate, and pyrophosphate, is also dependent on substrate and pH. Taken together, these results are indicative of a discrimination between ADP and ATP by the enzyme. A mechanism of azide inhibition is proposed.  相似文献   

16.
Selenium (Se) can provide unique biochemical and biological functions, and properties to macromolecules, including protein and RNA. Although Se has not yet been found in DNA, identification of the presence of Se in natural tRNAs has led to discovery of the naturally occurring 2-selenouridine and 5-[(methylamino)methyl]-2-selenouridine (mnm(5)se(2)U). The Se-atoms at C(2) of the modified uridines are introduced by 2-selenouridine synthase via displacement of the S-atoms in the corresponding 2-thiouridine nucleotides of the tRNAs, and selenophosphate is used as the Se donor. The research indicated that mnm(5)se(2)U is located at the first or wobble position of the anticodons in several bacterial tRNAs, including tRNA(Lys), tRNA(Glu), and tRNA(Gln). The 2-seleno functionality on this modified nucleotide probably improves the translation accuracy and/or efficiency. These observations in vivo suggest that the presence of Se can provide natural RNAs with useful properties to better function and survival. To further investigate the biochemical and structural properties of Se-derivatized nucleic acids (SeNA), we have pioneered chemical and enzymatic synthesis of Se-derivatized nucleic acids, and introduced Se into both RNA and DNA at a variety of positions by atom-specific replacement of oxygen. This review outlines the recent advancements in chemical and biochemical syntheses, and studies of SeNAs, and their potential applications in structural and functional investigation of nucleic acids and their protein complexes.  相似文献   

17.
18.
19.
Primary and secondary structure of U2 snRNA   总被引:16,自引:5,他引:11       下载免费PDF全文
With the improved rapid sequencing techniques, the earlier sequence of U2 RNA of Novikoff hepatoma (Shibata et al, J. Biol. Chem. 250, 3909-3920, 1975) was reanalyzed and modified. The improved sequence of U2 RNA is 188 (or 189) nucleotides long and is in register with a characterized U2 RNA pseudogene (Denison et al, PNAS 78, 810-814, 1981) except for an 11 nucleotide sequence (nucleotides 147-157) which is absent from the pseudogene. From these results, a secondary structure of U2 RNA is proposed which is supported by the preferred cleavage sites with T1-RNase, RNase A and S1 nuclease. Isolated U2 RNA was cleaved by T1-RNase preferentially at positions 64 and 164, whereas U2 RNA in U2-snRNP was cleaved only at position 64, indicating that position 164 is protected in U2-snRNP. As with U1 RNA (Epstein et al, PNAS 78, 1562-1566, 1981) the 5'-end of isolated U2 RNA was not preferentially cleaved by T1-RNase.  相似文献   

20.
Messenger RNA orients on the small ribosomal subunit by base pairing with a complementary sequence in ribosomal RNA. We have positioned this ribosomal RNA segment and thus oriented the mRNA using a new technique--localization of an antibody-recognizable modified complementary oligodeoxynucleotide by electron microscopy. A synthetic oligodeoxynucleotide complementary to the message-positioning ribosomal RNA sequence was modified at either or both ends with different antigenic markers. Electron microscopy of subunit-oligodeoxynucleotide-antibody complexes allowed separate placement of each terminal marker of the oligodeoxynucleotide probe. The 5'-end of the complementary sequence contacts the subunit at the platform tip (rRNA nucleotide 1542). The message then extends along the interior side of the platform to the level of the fork of the cleft separating the platform from the subunit body, and displaced slightly to the convex side of the platform (rRNA nucleotide 1531). Based on our results and data from other laboratories, we propose a model for the positioning of messenger RNA on the 30 S subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号