首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RhoA activation and increased intracellular Ca(2+) concentration mediated by the activation of transient receptor potential channels (TRPC) both contribute to the thrombin-induced increase in endothelial cell contraction, cell shape change, and consequently to the mechanism of increased endothelial permeability. Herein, we addressed the possibility that TRPC signals RhoA activation and thereby contributes in actinomyosin-mediated endothelial cell contraction and increased endothelial permeability. Transduction of a constitutively active Galphaq mutant in human pulmonary arterial endothelial cells induced RhoA activity. Preventing the increase in intracellular Ca2+ concentration by the inhibitor of Galphaq or phospholipase C and the Ca2+ chelator, BAPTA-AM, abrogated thrombin-induced RhoA activation. Depletion of extracellular Ca2+ also inhibited RhoA activation, indicating the requirement of Ca2+ entry in the response. RhoA activation could not be ascribed to storeoperated Ca2+ (SOC) entry because SOC entry induced with thapsigargin or small interfering RNA-mediated inhibition of TRPC1 expression, the predominant SOC channel in these endothelial cells, failed to alter RhoA activity. However, activation of receptor-operated Ca2+ entry by oleoyl-2-acetyl-sn-glycerol, the membrane permeable analogue of the Galphaq-phospholipase C product diacylglycerol, induced RhoA activity. Receptor-operated Ca2+ activation was mediated by TRPC6 because small interfering RNA-induced TRPC6 knockdown significantly reduced Ca2+ entry. TRPC6 knockdown also prevented RhoA activation, myosin light chain phosphorylation, and actin stress fiber formation as well as inter-endothelial junctional gap formation in response to either oleoyl-2-acetyl-sn-glycerol or thrombin. TRPC6-mediated RhoA activity was shown to be dependent on PKCalpha activation. Our results demonstrate that Galphaq activation of TRPC6 signals the activation of PKCalpha, and thereby induces RhoA activity and endothelial cell contraction.  相似文献   

2.
In this report, sphingosine-1-phosphate (S1P), a serum-borne bioactive lipid, is shown to activate tight-junction-associated protein Zonula Occludens-1 (ZO-1), which in turn plays a critical role in regulating endothelial chemotaxis and barrier integrity. After S1P stimulation, ZO-1 was redistributed to the lamellipodia and cell-cell junctions via the S1P1/G(i)/Akt/Rac pathway. Similarly, both endothelial barrier integrity and cell motility were significantly enhanced in S1P-treated cells through the G(i)/Akt/Rac pathway. Importantly, S1P-enhanced barrier integrity and cell migration were abrogated in ZO-1 knockdown cells, indicating ZO-1 is functionally indispensable for these processes. To investigate the underlying mechanisms, we demonstrated that cortactin plays a critical role in S1P-induced ZO-1 redistribution to the lamellipodia. In addition, S1P significantly induced the formation of endothelial tight junctions. ZO-1 and alpha-catenin polypeptides were colocalized in S1P-induced junctional structures; whereas, cortactin was not observed in these regions. Together, these results suggest that S1P induces the formation of two distinct ZO-1 complexes to regulate two different endothelial functions: ZO-1/cortactin complexes to regulate chemotactic response and ZO-1/alpha-catenin complexes to regulate endothelial barrier integrity. The concerted operation of these two ZO-1 complexes may coordinate two important S1P-mediated functions, i.e. migration and barrier integrity, in vascular endothelial cells.  相似文献   

3.
Endothelial cell (EC) barrier dysfunction induced by inflammatory agonists is a frequent pathophysiologic event in multiple diseases. The platelet-derived phospholipid sphingosine-1 phosphate (S1P) reverses this dysfunction by potently enhancing the EC barrier through a process involving Rac GTPase-dependent cortical actin rearrangement as an integral step. In this study we explored the role of the ezrin, radixin, and moesin (ERM) family of actin-binding linker protein in modulating S1P-induced human pulmonary EC barrier enhancement. S1P induces ERM translocation to the EC periphery and promotes ERM phosphorylation on a critical threonine residue (Ezrin-567, Radixin-564, Moesin-558). This phosphorylation is dependent on activation of PKC isoforms and Rac1. The majority of ERM phosphorylation on these critical threonine residues after S1P occurs in moesin and ezrin. Baseline radixin phosphorylation is higher than in the other two ERM proteins but does not increase after S1P. S1P-induced moesin and ezrin threonine phosphorylation is not mediated by the barrier enhancing receptor S1PR1 because siRNA downregulation of S1PR1 fails to inhibit these phosphorylation events, while stimulation of EC with the S1PR1-specific agonist SEW2871 fails to induce these phosphorylation events. Silencing of either all ERM proteins or radixin alone (but not moesin alone) reduced S1P-induced Rac1 activation and phosphorylation of the downstream Rac1 effector PAK1. Radixin siRNA alone, or combined siRNA for all three ERM proteins, dramatically attenuates S1P-induced EC barrier enhancement (measured by transendothelial electrical resistance (TER), peripheral accumulation of di-phospho-MLC, and cortical cytoskeletal rearrangement. In contrast, moesin depletion has the opposite effects on these parameters. Ezrin silencing partially attenuates S1P-induced EC barrier enhancement and cytoskeletal changes. Thus, despite structural similarities and reported functional redundancy, the ERM proteins differentially modulate S1P-induced alterations in lung EC cytoskeleton and permeability. These results suggest that ERM activation is an important regulatory event in EC barrier responses to S1P.  相似文献   

4.
Cioffi DL  Wu S  Stevens T 《Cell calcium》2003,33(5-6):323-336
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, I(SOC). Indeed, I(SOC) is a relatively small inward Ca2+ current that exhibits an approximate +40mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of I(SOC), although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of I(SOC) requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4-protein 4.1 physical linkage regulates I(SOC) activation following Ca2+ store depletion.  相似文献   

5.
6.
The transient receptor potential canonical (TRPC) family channels are proposed to be essential for store-operated Ca2+ entry in endothelial cells. Ca2+ signaling is involved in NF-kappaB activation, but the role of store-operated Ca2+ entry is unclear. Here we show that thrombin-induced Ca2+ entry and the resultant AMP-activated protein kinase (AMPK) activation targets the Ca2+-independent protein kinase Cdelta (PKCdelta) to mediate NF-kappaB activation in endothelial cells. We observed that thrombin-induced p65/RelA, AMPK, and PKCdelta activation were markedly reduced by knockdown of the TRPC isoform TRPC1 expressed in human endothelial cells and in endothelial cells obtained from Trpc4 knock-out mice. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase beta downstream of the Ca2+ influx or knockdown of the downstream Ca2+/calmodulin-dependent protein kinase kinase beta target kinase, AMPK, also prevented NF-kappaB activation. Further, we observed that AMPK interacted with PKCdelta and phosphorylated Thr505 in the activation loop of PKCdelta in thrombin-stimulated endothelial cells. Expression of a PKCdelta-T505A mutant suppressed the thrombin-induced but not the TNF-alpha-induced NF-kappaB activation. These findings demonstrate a novel mechanism for TRPC channels to mediate NF-kappaB activation in endothelial cells that involves the convergence of the TRPC-regulated signaling at AMPK and PKCdelta and that may be a target of interference of the inappropriate activation of NF-kappaB associated with thrombosis.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid that activates G protein-coupled S1P receptors and initiates a broad range of responses in vascular endothelial cells. The small GTPase Rac1 is implicated in diverse S1P-modulated cellular responses in endothelial cells, yet the molecular mechanisms involved in S1P-mediated Rac1 activation are incompletely understood. We studied the pathways involved in S1P-mediated Rac1 activation in bovine aortic endothelial cells (BAEC) and found that S1P-induced Rac1 activation is impaired following chelation of G protein betagamma subunits by transfection of betaARKct. Treatment with the Src tyrosine kinase inhibitor PP2 completely attenuated S1P-mediated Rac1 activation; however, pretreatment of BAEC with wortmannin, an inhibitor of phosphoinositide (PI) 3-kinase, had no effect on Rac1 activation while completely blocking S1P-induced Akt phosphorylation. We used Rac1-specific small interfering RNA (siRNA) duplexes to "knock down" endogenous Rac1 expression and found that siRNA-mediated Rac1 knockdown significantly impaired basal as well as S1P-induced phosphorylation of protein kinase Akt, as well as several downstream targets of Akt including endothelial nitric-oxide synthase and glycogen synthase kinase 3beta. By contrast, S1P-induced phosphorylation of the mitogen-activated protein kinases ERK1/2 was unperturbed by siRNA-mediated Rac1 knockdown. We found that overexpression of the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 markedly enhanced Rac1 activity, whereas a dominant negative Tiam1 mutant significantly attenuated S1P-mediated Rac1 activation. Taken together, these studies identify G protein betagamma subunits, Src kinase and the GEF Tiam1 as upstream modulators of S1P-mediated Rac1 activation, and establish a central role for Rac1 in S1P-mediated activation of PI 3-kinase/Akt/endothelial nitric-oxide synthase signaling in vascular endothelial cells.  相似文献   

8.
Sphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts. Activated matriptase first began to appear as small spots at cell-cell contacts, and then its deposits elongated along cell-cell contacts. Concomitantly, S1P induced assembly of adherens junctions and subcortical actin belts. Matriptase localization was observed to be coincident with markers of adherens junctions at cell-cell contacts but likely not to be incorporated into the tightly bound adhesion plaque. Disruption of subcortical actin belt formation and prevention of adherens junction assembly led to prevention of accumulation and activation of the protease at cell-cell contacts. These data suggest that S1P-induced accumulation and activation of matriptase depend on the S1P-induced adherens junction assembly. Although MAb M32, directed against one of the low-density lipoprotein receptor class A domains of matriptase, blocked S1P-induced activation of the enzyme, the antibody had no effect on S1P-induced actin cytoskeletal rearrangement. Together, these data indicate that actin cytoskeletal rearrangement is necessary but not sufficient for S1P-induced activation of matriptase at cell-cell contacts. The coupling of matriptase activation to adherens junction assembly and actin cytoskeletal rearrangement may serve to ensure tight control of matriptase activity, restricted to cell-cell junctions of mammary epithelial cells.  相似文献   

9.
Small GTPase Rac is important regulator of endothelial cell (EC) barrier enhancement by prostacyclin characterized by increased peripheral actin cytoskeleton and increased interactions between VE-cadherin and other adherens junction (AJ) proteins. This study utilized complementary approaches including siRNA knockdown, culturing in Ca(2+) -free medium, and VE-cadherin blocking antibody to alter VE-cadherin extracellular interactions to investigate the role of VE-cadherin outside-in signaling in modulation of Rac activation and EC barrier regulation by prostacyclin analog iloprost. Spatial analysis of Rac activation in pulmonary EC by FRET revealed additional spike in iloprost-induced Rac activity at the sites of newly formed cell-cell junctions. In contrast, disruption of VE-cadherin extracellular trans-interactions suppressed iloprost-activated Rac signaling and attenuated EC barrier enhancement and cytoskeletal remodeling. These inhibitory effects were associated with decreased membrane accumulation and activation of Rac-specific guanine nucleotide exchange factors (GEFs) Tiam1 and Vav2. Conversely, plating of pulmonary EC on surfaces coated with extracellular VE-cadherin domain further promoted iloprost-induced Rac signaling. In the model of thrombin-induced EC barrier recovery, blocking of VE-cadherin trans-interactions attenuated activation of Rac pathway during recovery phase and delayed suppression of Rho signaling and restoration of EC barrier properties. These results suggest that VE-cadherin outside-in signaling controls locally Rac activity stimulated by barrier protective agonists. This control is essential for maximal EC barrier enhancement and accelerated barrier recovery.  相似文献   

10.
We speculated that the sphingosine-1-phosphate (S1P) receptor S1P(2), which uniquely inhibits cell migration, might mediate inhibitory effects on endothelial cell migration and angiogenesis, different from S1P(1) and S1P(3). Mouse vascular endothelial cells, which endogenously express S1P(2) and S1P(3), but not S1P(1), responded to S1P and epidermal growth factor (EGF) with stimulation of Rac, migration, and the formation of tube-like structures on the Matrigel. The S1P(3)-antagonist VPC-23019 abolished S1P-induced, G(i)-dependent Rac stimulation, cell migration, and tube formation, whereas the S1P(2)-antagonist JTE-013 enhanced these S1P-induced responses, suggesting that S1P(2) exerts inhibitory effects on endothelial Rac, migration, and angiogenesis. S1P(2) overexpression markedly augmented S1P-induced, G(i)-independent inhibition of EGF-induced migration and tube formation. Finally, the blockade of S1P(2) by JTE-013 potentiated S1P-induced stimulation of angiogenesis in vivo in the Matrigel implant assay. These observations indicate that in contrast to S1P(1) and S1P(3), S1P(2) negatively regulates endothelial morphogenesis and angiogenesis most likely through down-regulating Rac.  相似文献   

11.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates cellular functions by ligation via G protein-coupled S1P receptors. In addition to its extracellular action, S1P also has intracellular effects; however, the signaling pathways modulated by intracellular S1P remain poorly defined. We have previously demonstrated a novel pathway of intracellular S1P generation in human lung endothelial cells (ECs). In the present study, we examined the role of intracellular S1P generated by photolysis of caged S1P on EC barrier regulation and signal transduction. Intracellular S1P released from caged S1P caused mobilization of intracellular calcium, induced activation of MAPKs, redistributed cortactin, vascular endothelial cadherin, and β-catenin to cell periphery, and tightened endothelial barrier in human pulmonary artery ECs. Treatment of cells with pertussis toxin (PTx) had no effect on caged S1P-mediated effects on Ca(2+) mobilization, reorganization of cytoskeleton, cell adherens junction proteins, and barrier enhancement; however, extracellular S1P effects were significantly attenuated by PTx. Additionally, intracellular S1P also activated small GTPase Rac1 and its effector Ras GTPase-activating-like protein IQGAP1, suggesting involvement of these proteins in the S1P-mediated changes in cell-to-cell adhesion contacts. Downregulation of sphingosine kinase 1 (SphK1), but not SphK2, with siRNA or inhibition of SphK activity with an inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (CII) attenuated exogenously administrated S1P-induced EC permeability. Furthermore, S1P1 receptor inhibitor SB649164 abolished exogenous S1P-induced transendothelial resistance changes but had no effect on intracellular S1P generated by photolysis of caged S1P. These results provide evidence that intracellular S1P modulates signal transduction in lung ECs via signaling pathway(s) independent of S1P receptors.  相似文献   

12.
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.  相似文献   

13.
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.  相似文献   

14.
The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration was sensitive to S1P(1) small interfering RNA (siRNA) and pertussis toxin, demonstrating coupling of S1P(1) to G(i). Overexpression of dominant negative (dn) PKC-epsilon or -zeta, but not PKC-alpha or -delta, blocked S1P-induced migration. Although S1P activated both PLD1 and PLD2, S1P-induced migration was attenuated by knocking down PLD2 or expressing dnPLD2 but not PLD1. Blocking PKC-epsilon, but not PKC-zeta, activity attenuated S1P-mediated PLD stimulation, demonstrating that PKC-epsilon, but not PKC-zeta, was upstream of PLD. Transfection of HPAECs with dnRac1 or Rac1 siRNA attenuated S1P-induced migration. Furthermore, transfection with PLD2 siRNA, infection of HPAECs with dnPKC-zeta, or treatment with myristoylated PKC-zeta peptide inhibitor abrogated S1P-induced Rac1 activation. These results establish that S1P signals through S1P(1) and G(i) to activate PKC-epsilon and, subsequently, a PLD2-PKC-zeta-Rac1 cascade. Activation of this pathway is necessary to stimulate the migration of lung endothelial cells, a key component of the angiogenic process.  相似文献   

15.
The role of the protein kinase Akt in cell migration is incompletely understood. Here we show that sphingosine-1-phosphate (S1P)-induced endothelial cell migration requires the Akt-mediated phosphorylation of the G protein-coupled receptor (GPCR) EDG-1. Activated Akt binds to EDG-1 and phosphorylates the third intracellular loop at the T(236) residue. Transactivation of EDG-1 by Akt is not required for G(i)-dependent signaling but is indispensable for Rac activation, cortical actin assembly, and chemotaxis. Indeed, T236AEDG-1 mutant sequestered Akt and acted as a dominant-negative GPCR to inhibit S1P-induced Rac activation, chemotaxis, and angiogenesis. Transactivation of GPCRs by Akt may constitute a specificity switch to integrate rapid G protein-dependent signals into long-term cellular phenomena such as cell migration.  相似文献   

16.
Novel therapeutic strategies are needed to reverse the loss of endothelial cell (EC) barrier integrity that occurs during inflammatory disease states such as acute lung injury. We previously demonstrated potent EC barrier augmentation in vivo and in vitro by the platelet-derived phospholipid, sphingosine 1-phosphate (S1P) via ligation of the S1P1 receptor. The S1P analogue, FTY720, similarly exerts barrier-protective vascular effects via presumed S1P1 receptor ligation. We examined the role of the S1P1 receptor in sphingolipid-mediated human lung EC barrier enhancement. Both S1P and FTY-induced sustained, dose-dependent barrier enhancement, reflected by increases in transendothelial electrical resistance (TER), which was abolished by pertussis toxin indicating Gi-coupled receptor activation. FTY-mediated increases in TER exhibited significantly delayed onset and intensity relative to the S1P response. Reduction of S1P1R expression (via siRNA) attenuated S1P-induced TER elevations whereas the TER response to FTY was unaffected. Both S1P and FTY rapidly (within 5 min) induced S1P1R accumulation in membrane lipid rafts, but only S1P stimulated S1P1R phosphorylation on threonine residues. Inhibition of PI3 kinase activity attenuated S1P-mediated TER increases but failed to alter FTY-induced TER elevation. Finally, S1P, but not FTY, induced significant myosin light chain phosphorylation and dramatic actin cytoskeletal rearrangement whereas reduced expression of the cytoskeletal effectors, Rac1 and cortactin (via siRNA), attenuated S1P-, but not FTY-induced TER elevations. These results mechanistically characterize pulmonary vascular barrier regulation by FTY720, suggesting a novel barrier-enhancing pathway for modulating vascular permeability.  相似文献   

17.
Store-operated calcium entry (SOCE) is a ubiquitous mechanism that is mediated by distinct SOC channels, ranging from the highly selective calcium release-activated Ca2+ (CRAC) channel in rat basophilic leukemia and other hematopoietic cells to relatively Ca2+-selective or non-selective SOC channels in other cells. Although the exact composition of these channels is not yet established, TRPC1 contributes to SOC channels and regulation of physiological function of a variety of cell types. Recently, Orai1 and STIM1 have been suggested to be sufficient for generating CRAC channels. Here we show that Orai1 and STIM1 are also required for TRPC1-SOC channels. Knockdown of TRPC1, Orai1, or STIM1 attenuated, whereas overexpression of TRPC1, but not Orai1 or STIM1, induced an increase in SOC entry and I(SOC) in human salivary gland cells. All three proteins were co-localized in the plasma membrane region of cells, and thapsigargin increased co-immunoprecipitation of TRPC1 with STIM1, and Orai1 in human salivary gland cells as well as dispersed mouse submandibular gland cells. In aggregate, the data presented here reveal that all three proteins are essential for generation of I(SOC) in these cells and that dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in activation of SOC channel in response to internal Ca2+ store depletion. Thus, these data suggest a common molecular basis for SOC and CRAC channels.  相似文献   

18.
Localization of TRPC1 channel in the sinus endothelial cells of rat spleen   总被引:1,自引:1,他引:0  
The ultrastructural localization of transient receptor potential C1 (TRPC1) channels in the sinus endothelial cells of rat spleen was examined by confocal laser scanning and electron microscopy. In addition, the localization of the closely associated proteins and channels, VE-cadherin, calreticulin, inositol-1,4,5-trisphosphate receptors type 1 (IP3R1), and ryanodine receptor (RyR), was also examined. Immunofluorescence microscopy of tissue cryosections revealed TRPC1 channels to be localized within the cytoplasm, in the superficial layer of the apical and basal parts of the cells, and in the junctional area of the adjacent endothelial cells. The distribution of Ca2+-storing tubulovesicular structures within endothelial cells was established by using tissue sections treated with osmium ferricyanide. Electron microscopy revealed densely stained tubulovesicular structures closely apposed to the plasma membrane and that occasionally ran closely parallel to the plasma membrane and near the caveolae and junctional apparatus. Immunolocalization analysis at the electron microscopy level using immunogold bound to the secondary antibody confirmed that TRPC1 channels were localized in the plasma membrane, caveolae, and vesicular structures in the subplasmalemmal cytoplasm of sinus endothelial cells. Calreticulin was predominantly localized in endoplasmic reticulum. IP3R1 and RyR, considered to be type 3, were colocalized in endoplasmic reticulum in proximity to the plasma membrane and caveolae. Thus, TRPC1 channels in sinus endothelial cells of the spleen might play an important role in controlling blood cell passage through phenomena including cytoskeletal reorganization, cell retraction, and disassembly of adherens junctions.This work was supported by a Grant-in-Aid for Scientific Research (C), Japan.  相似文献   

19.
Calcium store depletion activates multiple ion channels, including calcium-selective and nonselective channels. Endothelial cells express TRPC1 and TRPC4 proteins that contribute to a calcium-selective store-operated current, I(SOC). Whereas thapsigargin activates the I(SOC) in pulmonary artery endothelial cells (PAECs), it does not activate I(SOC) in pulmonary microvascular endothelial cells (PMVECs), despite inducing a significant rise in global cytosolic calcium. Endoplasmic reticulum exhibits retrograde distribution in PMVECs when compared with PAECs. We therefore sought to determine whether endoplasmic reticulum-to-plasma membrane coupling represents an important determinant of I(SOC) activation in PAECs and PMVECs. Endoplasmic reticulum organization is controlled by microtubules, because nocodozole induced microtubule disassembly and caused retrograde endoplasmic reticulum collapse in PMVECs. In PMVECs, rolipram treatment produced anterograde endoplasmic reticulum distribution and revealed a thapsigargin-activated I(SOC) that was abolished by nocodozole and taxol. Microtubule motors control organelle distribution along microtubule tracks, with the dynein motor causing retrograde movement and the kinesin motor causing anterograde movement. Dynamitin expression reduces dynein motor function inducing anterograde endoplasmic reticulum transport, which allows for direct activation of I(SOC) by thapsigargin in PMVECs. In contrast, expression of dominant negative kinesin light chain reduces kinesin motor function and induces retrograde endoplasmic reticulum transport; dominant negative kinesin light chain expression prevented the direct activation of I(SOC) by thapsigargin in PAECs. I(SOC) activation is an important step leading to disruption of cell-cell adhesion and increased macromolecular permeability. Thus, microtubule motor function plays an essential role in activating cytosolic calcium transitions through the membrane I(SOC) channel leading to endothelial barrier disruption.  相似文献   

20.
The one or more coupling mechanisms of store-operated channels (SOCs) to endoplasmic reticulum (ER) Ca2+ store depletion as well as the molecular identity of SOCs per se still remain a mystery. Here, we demonstrate the co-existence of two populations of molecular distinct endogenous SOCs in LNCaP prostate cancer epithelial cells, which are preferentially activated by either active inositol 1,4,5-trisphosphate (IP3)-mediated or passive thapsigargin-facilitated store depletion and have different ER store content sensitivity. The first population, called SOC(CC) (for "conformational coupling"), is characterized by preferential IP3 receptor-dependent mode of activation, as judged from sensitivity to cytoskeleton modifications, and dominant contribution of transient receptor potential (TRP) TRPC1 within it. The second one, called SOC(CIF) (for "calcium influx factor"), depends on Ca(2+)-independent phospholipase A2 for activation with probable CIF involvement and is mostly represented by TRPC4. The previously identified SOC constituent in LNCaP cells, TRPV6, seems to play equal role in both SOC populations. These results provide new insight into the nature of SOCs and their representation in the single cell type as well as permit reconciliation of current SOC activation hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号