首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gareth  Jones 《Journal of Zoology》1995,237(2):303-312
The noctule Nyctulus noctula (Schreber, 1774) is a relatively large (c. 25 g) insectivorous bat which catches insects on the wing (by aerial hawking). Emergence at a maternity roost was earliest relative to sunset when females were lactating, and bats may then have risked predation by flying at higher light levels during a period of high energy demand. Flight performance was quantified by using stereophotogrammetry. At feeding sites bats flew at 6.0 ± 2.1 m/s. This was faster than predicted minimum power speed (V mp), and either between V mp and maximum range speed (V mr), or close to their predicted V mr, depending on which aerodynamic model of flight power requirements was used. The echolocation behaviour of noctules is flexible. Long duration, low frequency calls (c. 20 kHz) with little frequency modulation were emitted while cruising, but at foraging sites the calls became more frequency-modulated. As the noctule is traditionally thought of as using low frequency echolocation, it was expected to receive weak echoes from small targets and therefore to specialize in eating large insect prey. Although the bats ate mainly beetles, large numbers of small dipterans were also eaten. The noctule is probably able to detect such small items because, when foraging, its calls become broadband and sweep from high frequencies. Higher harmonics are also present, and these may assist in the detection of small prey. In noctules, as in many bats, there appears to be a 1:1 link between wingbeat and call production during the search phase of foraging.  相似文献   

2.
Summary Five Greater Horseshoe bats,Rhinolophus ferrumequinum, were trained in a two-alternative forced-choice procedure to discriminate between artificial echoes of insects fluttering at different wingbeat rates. The stimuli were electronically produced phantom targets simulating fluttering insects with various wingbeat frequencies (Figs. 3, 4). Difference thresholds for wingbeat rates of 50 Hz and 100 Hz were determined. For an S+ of 50 Hz the difference threshold values lay between 2.8 and 4.6 Hz for individual bats; with an S+ of 100 Hz they increased to between 9.8 and 12.0 Hz (Figs. 5, 6, Table 1).Three bats, previously trained to discriminate between a S+ of 50 Hz and a S– with a lower wingbeat rate, were tested with higher frequency stimuli. When they had to decide between their old S+ of 50 Hz and either a 60 or 70 Hz echo two bats continued to select the 50 Hz stimulus while the third bat now preferred the faster fluttering insects (Table 2).During the discrimination task the echolocation behavior of the bats was monitored. When the phantom targets were presented all bats increased their duty-cycle of sound emission from about 40% to sometimes near 70%. They did so by either emitting longer echolocation calls or by increasing the sound repetition rate (Figs. 7, 8).The results show that Greater Horseshoe bats can determine the wingbeat rate of flying insects with an accuracy between 6 and 12%. Possible cues for flutter rate determination by cf-fm bats from natural and artificial insect echoes are discussed.Abbreviations DC duty-cycle - PD pulse duration - PI pulse interval - cf constantfrequency - fm frequency modulation  相似文献   

3.
Bats are among the few predators that can exploit the large quantities of aerial insects active at night. They do this by using echolocation to detect, localize, and classify targets in the dark. Echolocation calls are shaped by natural selection to match ecological challenges. For example, bats flying in open habitats typically emit calls of long duration, with long pulse intervals, shallow frequency modulation, and containing low frequencies-all these are adaptations for long-range detection. As obstacles or prey are approached, call structure changes in predictable ways for several reasons: calls become shorter, thereby reducing overlap between pulse and echo, and calls change in shape in ways that minimize localization errors. At the same time, such changes are believed to support recognition of objects. Echolocation and flight are closely synchronized: we have monitored both features simultaneously by using stereo photogrammetry and videogrammetry, and by acoustic tracking of flight paths. These methods have allowed us to quantify the intensity of signals used by free-living bats, and illustrate systematic changes in signal design in relation to obstacle proximity. We show how signals emitted by aerial feeding bats can be among the most intense airborne sounds in nature. Wideband ambiguity functions developed in the processing of signals produce two-dimensional functions showing trade-offs between resolution of time and velocity, and illustrate costs and benefits associated with Doppler sensitivity and range resolution in echolocation. Remarkably, bats that emit broadband calls can adjust signal design so that Doppler-related overestimation of range compensates for underestimation of range caused by the bat's movement in flight. We show the potential of our methods for understanding interactions between echolocating bats and those prey that have evolved ears that detect bat calls.  相似文献   

4.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

5.
In southern Central America, 10 species of emballonurid bats occur, which are all aerial insectivores: some hunt flying insects preferably away from vegetation in open space, others hunt in edge space near vegetation and one species forages mainly over water. We present a search call design of each species and link signal structure to foraging habitat. All emballonurid bats use a similar type of echolocation call that consists of a central, narrowband component and one or two short, frequency-modulated sweeps. All calls are multi-harmonic, generally with most energy concentrated in the second harmonic. The design of search calls is closely related to habitat type, in particular to distance of clutter. Emballonurid bats foraging in edge space near vegetation and over water used higher frequencies, shorter call durations and shorter pulse intervals compared with species mostly hunting in open, uncluttered habitats. Peak frequency correlated negatively with body size. Regular frequency alternation between subsequent calls was typical in the search sequences of four out of 10 species. We discuss several hypotheses regarding the possible role of this frequency alternation, including species identification and partitioning of acoustic channels. Furthermore, we propose a model of how frequency alternation could increase the maximum detection distance of obstacles by marking search calls with different frequencies.  相似文献   

6.
Echolocation behaviour and the structure of calls of Pipistrellus pygmaeus and Pipistrellus pipistrellus were studied by using a time expansion bat detector. Echolocation signals were recorded in the field in south-eastern Moravia and northern Bohemia (Czech Republic) and in an ad hoc experimental laboratory. For each of the species, multivariate analysis of variance (MANOVA) indicated significant differences in calls produced inside the experimental room and in the open. Paired t -tests and MANOVA were also used to reveal influences of interindividual contacts in each of the cryptic species on the spectral patterns of call variables. Differences were found in the spectral variables of echolocation calls of an individual flying in the room alone and in a group of conspecifics. The possibility that bats use their flexibility to avoid mutual disturbances of echolocation calls was tested. We found that bats flying in a group modify the parameters of their echolocation signals according to the presence of other individuals of the same species. These differences can indicate jamming avoidance and recognition of own echoes. However, they did not change the parameters if individuals of another species were present. Social calls are more numerous when bats fly in a mixed-species group than in a monospecific group.  相似文献   

7.
To understand complex sensory-motor behavior related to object perception by echolocating bats, precise measurements are needed for echoes that bats actually listen to during flight. Recordings of echolocation broadcasts were made from flying bats with a miniature light-weight microphone and radio transmitter (Telemike) set at the position of the bat's ears and carried during flights to a landing point on a wall. Telemike recordings confirm that flying horseshoe bats (Rhinolophus ferrumequinum nippon) adjust the frequency of their sonar broadcasts to compensate for echo Doppler shifts. Returning constant frequency echoes were maintained at the bat's reference frequency +/-83 Hz during flight, indicating that the bats compensated for frequency changes with an accuracy equivalent to that at rest. The flying bats simultaneously compensate for increases in echo amplitude as target range becomes shorter. Flying bats thus receive echoes with both stabilized frequencies and stabilized amplitudes. Although it is widely understood that Doppler-shift frequency compensation facilitates detection of fluttering insects, approaches to a landing do not involve fluttering objects. Combined frequency and amplitude compensation may instead be for optimization of successive frequency modulated echoes for target range estimation to control approach and landing.  相似文献   

8.
The foraging and echolocation behaviour of Myotis evotis was investigated during substrate-gleaning and aerial-hawking attacks. Bats gleaned moths from both the ground and a bark-covered trellis, however, they were equally adept at capturing flying moths. The calls emitted by M. evotis during substrate-gleaning sequences were short, broadband, and frequency-modulated (FM). Three behavioural phases were identified: search, hover, and attack. Gleaning search calls were significantly longer in duration, lower in highest frequency, and larger in bandwidth than hover/attack calls. Calls were detected in only 68% of gleaning sequences, and when they were emitted, bats ceased calling 200 ms before attacking. Terminal feeding buzzes, the rapid increase in pulse repetition rate associated with an attempted prey capture, were never recorded during gleaning attacks. The echolocation calls uttered by M. evotis during aerial-hawking foraging sequences were also short duration, high frequency, FM calls. Two distinct acoustic phases were identified: approach and terminal. Approach calls were significantly different from terminal calls in all variables measured. Calls were detected in 100% of aerial-hawking attacks and terminal feeding buzzes were invariably produced. Gleaning hover/attack calls were spectrally similar to aerial approach calls, but were shorter in duration and emitted at a significantly lower (but constant) repetition rate than aerial signals. Although the foraging environment (flight cage contents) remained unchanged between tasks (substrate-gleaning vs. aerial-hawking), bats emitted significantly lower amplitude calls while gleaning. We conclude that M. evotis adjusts its echolocation behaviour to meet the perceptual demands (acoustical constraints) imposed by each foraging situations.Abbreviations BW bandwidth - CF constant frequency - dB SPL decibels sound pressure level - FM frequency modulated - HF highest frequency - LF lowest frequency - PF peak frequency Presented at the meeting Acoustic Images in Bat Sonar, a conference on FM echolocation honoring Donald R. Griffin's contributions to experimental biology (June 14–16, Brown University, Providence RI).  相似文献   

9.
Most insectivorous bats use echolocation to determine the identity of flying insects. Among the many target features that are so extracted, the insect's wingbeat pattern and frequency appear to serve as useful cues for identification. Biosonar pulses impinging on the fluttering wings of an insect are returned as echoes whose amplitudes vary with time, thus providing a characteristic signature of the insect. It has been shown previously that neurons in the inferior colliculus, a midbrain auditory nucleus, of the little brown bat respond to sound stimuli that mimic echoes from fluttering targets. To examine the manner in which target identity is represented in the inferior colliculus, an ensemble coding analysis using a filter-based approach was undertaken. The analysis indicates that a discrete subset of neurons in the inferior colliculus, the onset units, are strongly tuned to wingbeat frequencies of targets that the bat hunts, and that ensemble response reaches a maximum at a distinct phase of the prey capture maneuver: the late approach stage. On the basis of the analysis it is hypothesized that inferior colliculus neurons may play an important role in target detection-identification processing. Although ensemble coding of temporally sequenced information has not been analyzed in the auditory system so far, this study indicates that this method of coding may provide the information necessary to detect and identify targets during prey capture. Received: 4 December 1995 / Accepted in revised form: 19 April 1996  相似文献   

10.
在广西桂林研究了同域分布的大蹄蝠(Hipposideros armiger)和中蹄蝠(H.larvatus)在不同开阔度环境中回声定位声波信号的变化。用超声波仪录制自由悬挂和分别释放于人工"大棚"和"小棚"内飞行的蝙蝠的回声定位声波,使用超声分析软件分析声脉冲时程、主频率及声脉冲间隔,通过重复测量方差分析比较不同状态下的声波参数。结果表明:中蹄蝠声波的主频在悬挂状态下最高,小棚内飞行时次之,大棚内飞行最低;两种蹄蝠声波的脉冲时程和脉冲间隔在悬挂状态下最长,大棚内飞行次之,小棚内飞行最低。总之,这两种蹄蝠的回声定位声波能够随所处状态的变化而变化,可根据生境的复杂度调节声讯号,具有明显的声波可塑性。  相似文献   

11.
Bats modify the structure and emission pattern of their calls to cope with the functional constraints of a given echolocation situation. As a consequence, the flexibility in sonar call use affects the potential niche use of a species. The present paper addresses call use in Megaderma lyra, a species with a short, broadband multiharmonic basic call, in typical orientation situations, when emerging from and re-entering a day roost, in cruising flight and when passing through vegetation, and during the pursuit of tethered, flying insects. While call duration and emission rate were adapted to the four orientation situations, call spectral composition was similar in these situations, except that bats emitted calls containing more harmonics when re-entering the roost. These moderate call modifications may be accounted for by the observation that M. lyra stayed close to landscape elements even in open habitats. Although M. lyra is a typical gleaner, all tested bats approached flying insects, guided by sonar calls of significantly decreasing duration and pulse interval, and of increasing sweep rate. Before capture, peak frequency was lowered from call to call. The spontaneous approaches towards flying insects with systematic changes in call pattern suggest regular aerial hunting in this species.  相似文献   

12.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

13.
蝙蝠回声定位声波的可塑性对其适应不同状态、生境以及捕食和社会交流具有重要的作用。为进一步研究大蹄蝠的回声定位声波在不同状态和生境下的可塑性,通过室内行为实验,对大蹄蝠在4 种不同状态(室内飞行、静息、布袋内和手持)和4 种不同生境复杂度(室外、室内0 棵树、室内1 棵树、室内5 棵树)条件下飞行的回声定位声波特征进行研究。结果表明:大蹄蝠的回声定位声波为CF - FM 型,通常连续发出2 - 4 个脉冲组成一个脉冲组。对比大蹄蝠在4 种不同状态下的回声定位叫声发现,主频按静息、布袋内、手持、飞行的顺序依次降低,后端FM 频宽则按手持、布袋内、飞行和静息的顺序依次变短;而脉冲间隔和脉冲时程则均按静 息、飞行、布袋内、手持的顺序依次增加。对比大蹄蝠在4 种不同生境复杂度中飞行的回声定位叫声发现,主频按室外、室内0 棵树、室内1 棵树、室内5 棵树依次提高,而脉冲时程及脉冲间隔则依次缩短;室外放飞条件下的后端FM 频宽比室内飞行的短。研究结果说明,大蹄蝠在不同状态、不同生境复杂度条件下的回声定位叫声具有明显的可塑性和生境适应性。  相似文献   

14.
Echolocating bats cry out loud to detect their prey   总被引:1,自引:0,他引:1  
Surlykke A  Kalko EK 《PloS one》2008,3(4):e2036
Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar hunting habits, prey detection range represents a unifying constraint on the emitted intensity largely independent of call shape, body size, and close phylogenetic relationships.  相似文献   

15.
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one''s own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap.  相似文献   

16.
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.  相似文献   

17.
Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.  相似文献   

18.
We investigated the detection cues used by the aerial-hawking bat Eptesicus nilssonii foraging in a cluttered environment. The bats can detect and attack rapidly moving targets within the clutter, i.e. below grass panicles, by using prey motion as a cue. Stationary objects are attacked only above the grass, but still within the clutter overlap zone. To test if the bats were guided by flutter from moth wings or by vision when searching for stationary targets, they were presented with male ghost swifts mounted on top of steel wires. There was no difference in attack frequency on live, fluttering moths compared to dead and spread ones. However, when comparing white and dark moths, we found a significantly higher attack frequency on white ones. As the attacks always were guided by echolocation calls, we hypothesize that northern bats, at least in the initial search phase, use visual cues as a complement to detect stationary ghost swifts.  相似文献   

19.
ABSTRACT

Previous studies have found variability and individual distinctiveness in the echolocation calls of bats. We consider two implications of individually distinct echolocation calls: 1) whether bats may be able to use such variation to recognise familiar conspecifics, and 2) whether investigators could use such variation to identify known individuals or to census populations. We compared the discriminability of the echolocation calls of big brown bats (Eptesicus fuscus) recorded in three situations: (a) while held in the hand, (b) while perched on a platform, and (c) while flying in an anechoic chamber. Using variables describing each sonar call, we employed discriminant function analysis (DFA) to assign calls to recording situation or to bat. Discrimination of calls by recording situation was largely unsuccessful, although flying calls could be distinguished from platform calls. Assignment of calls to individual bat across recording situations yielded 72% success, and, within a given recording situation, yielded 87% success. Stepwise DFA reduced the number of variables needed to discriminate between individuals with only a slight decrease in correct classification. These results suggest that bats (or researchers) may be able to use the information contained in the echolocation calls for individual recognition. Individual distinctiveness raises the possibility of censusing bats by sound. We used cluster analysis in an attempt to determine whether, given a sample of calls from an unknown number of bats, a reasonable estimate of the number of bats could be obtained. Results were unsatisfactory, suggesting that cluster analysis probably will not permit acoustic censusing of bats in the field.  相似文献   

20.
Echolocating bats have to assign the received echoes to the correct call that generated them. Failing to do so will result in the perception of virtual targets that are positioned where there is no actual target. The assignment of echoes to the emitted calls can be ambiguous especially if the pulse intervals between calls are short and kept constant. Here, we present first evidence that greater mouse-eared bats deal with ambiguity by changing the pulse interval more often, in particular by reducing the number of calls in the terminal group before landing. This strategy separates virtual targets from real ones according to their change in position. Real targets will always remain in a constant position, and virtual targets will jitter back and forth according to the change in the time interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号