首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apolipoprotein A-V (apoA-V) is a potent regulator of intravascular triglyceride (TG) metabolism, yet its plasma concentration is very low compared with that of other apolipoproteins. To examine the basis for its low plasma concentration, the secretion efficiency of apoA-V was measured in stably transfected McA-RH7777 rat hepatoma cells. Pulse-chase experiments revealed that only ~20% of newly synthesized apoA-V is secreted into culture medium within 3 h postsynthesis and that ~65% undergoes presecretory turnover; similar results were obtained with transfected nonhepatic Chinese hamster ovary cells. ApoA-V secreted by McA-RH7777 cells was not associated with cell surface heparin-competable binding sites. When stably transfected McA-RH7777 cells were treated with oleic acid, the resulting increase in TG synthesis caused a reduction in apoA-V secretion, a reciprocal increase in cell-associated apoA-V, and movement of apoA-V onto cytosolic lipid droplets. In a stably transfected doxycycline-inducible McA-RH7777 cell line, apoA-V expression inhibited TG secretion by ~50%, increased cellular TG, and reduced Z-average VLDL(1) particle diameter from 81 to 67 nm; however, no impact on apoB secretion was observed. These data demonstrate that apoA-V inefficiently traffics within the secretory pathway, that its intracellular itinerary can be regulated by changes in cellular TG accumulation, and that apoA-V synthesis can modulate VLDL TG mobilization and secretion.  相似文献   

2.
Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another.  相似文献   

3.
In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.  相似文献   

4.
PARsylation [poly(ADP-ribosyl)ation] of proteins is implicated in the regulation of diverse physiological processes. Tankyrase is a molecular scaffold with this catalytic activity and has been proposed as a regulator of vesicular trafficking on the basis, in part, of its Golgi localization in non-polarized cells. Little is known about tankyrase localization in polarized epithelial cells. Using MDCK (Madin-Darby canine kidney) cells as a model, we found that E-cadherin-mediated intercellular adhesion recruits tankyrase from the cytoplasm to the lateral membrane (including the tight junction), where it stably associates with detergent-insoluble structures. This recruitment is mostly completed within 8 h of calcium-induced formation of cell-cell contact. Conversely, when intercellular adhesion is disrupted by calcium deprivation, tankyrase returns from the lateral membrane to the cytoplasm and becomes more soluble in detergents. The PARsylating activity of tankyrase promotes its dissociation from the lateral membrane as well as its ubiquitination and proteasome-mediated degradation, resulting in an apparent protein half-life of approximately 2 h. Inhibition of tankyrase autoPARsylation using H2O2-induced NAD+ depletion or PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride] treatment results in tankyrase stabilization and accumulation at the lateral membrane. By contrast, stabilization through proteasome inhibition results in tankyrase accumulation in the cytoplasm. These data suggest that cell-cell contact promotes tankyrase association with the lateral membrane, whereas PARsylating activity promotes translocation to the cytosol, which is followed by ubiquitination and proteasome-mediated degradation. Since the lateral membrane is a sorting station that ensures domain-specific delivery of basolateral membrane proteins, the regulated tankyrase recruitment to this site is consistent with a role in polarized protein targeting in epithelial cells.  相似文献   

5.
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

6.
Heregulin (HRG) β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell–cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell–cell adhesion.  相似文献   

7.
Most cells communicate with their immediate neighbors through the exchange of cytosolic molecules such as ions, second messengers and small metabolites. This activity is made possible by clusters of intercellular channels called gap junctions, which connect adjacent cells. In terms of molecular architecture, intercellular channels consist of two channels, called connexons, which interact to span the plasma membranes of two adjacent cells and directly join the cytoplasm of one cell to another. Connexons are made of structural proteins named connexins, which compose a multigene family. Connexin channels participate in the regulation of signaling between developing and differentiated cell types, and recently there have been some unexpected findings. First, unique ionic- and size-selectivities are determined by each connexin; second, the establishment of intercellular communication is defined by the expression of compatible connexins; third, the discovery of connexin mutations associated with human diseases and the study of knockout mice have illustrated the vital role of cell-cell communication in a diverse array of tissue functions.  相似文献   

8.
Gap junctions consist of intercellular channels that connect the cytoplasm of adjacent cells directly and allow the exchange of small molecules. These channels are unique in that they span two plasma membranes--the more orthodox ion or ligand-gated channels span only one. Each cell contributes half of the intercellular channel, and each half is known as a connexon or hemichannel. Recent studies indicate that connexons are also active in single plasma membranes and that they might be essential in intercellular signalling beyond their incorporation into gap junctions.  相似文献   

9.
Summary Labyrinth and nephridial canal cells of the crayfish (Orconectes virilis) antennal gland possess two types of intercellular junctions revealed by freeze-fracture studies. Apical margins of the cells are connected by long septate junctions. In replicas, these junctions consist of many parallel rows of 80–140 Å intramembrane particles situated on the PF membrane face (EF and PF fracture faces of Branton et al., 1975). Rows of pits are found on the EF fracture face and are deemed complementary to the rows of particles. Moreover, lateral margins of basal regions of the epithelial cells are attached by many intercellular junctions. These contacts are characterized in thin plastic sections by a narrow dense cytoplasmic plaque located subjacent to the plasma membrane at sites of adjoined cells, and 5 to 12 fine strands of dense material that extend across the intercellular gap between adjoined cells. In freeze-fracture replicas, EF intramembrane faces basal to the region of the plasma membrane containing septate junctions exhibit numerous discoid clusters of particles. The particle aggregates, assumed to represent freeze-cleave images of adhering junctions, range from 900 to 3,700 Å in diameter, with individual particles about 185 Å in diameter. These junctions appear to connect epithelial cell processes formed by basal infoldings of the plasma-lemma, and occur between adjacent cells as well as adjacent processes of a single cell. The discrete aggregates of particles resemble replicated desmosomes (Shienvold and Kelly, 1974) and hemi-desmosomes (Shivers, 1976); therefore, they probably do not constitute a basis for electrical coupling between antennal gland epithelial cells.Supported by the National Research Council of Canada  相似文献   

10.
Gap junctions are membrane structures made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules. Nearly 40 years ago, the loss of functional gap junctions has been described in cancer cells and led to the hypothesis that such type of intercellular communication is involved in the carcinogenesis process. From this time, a lot of data has been accumulated confirming that gap junctions are frequently decreased or absent in cancer cells whatever their tissue and species origins. Here, we review such data by insisting on the possible links existing between altered gap-junctional intercellular communication capacity (or the altered expression of their constitutive proteins, the connexins) and the stages of cancer progression in various cancer models. Then, we analyse particular aspects of the disturbance of connexin-mediated communication in cancer such as the cytoplasmic localization of connexins, the lack of heterologous communication between cancer cells and normal cells, the role of connexin gene mutations in cancer. In a separate part of the review, we also analyse the disturbance of gap-junctional intercellular communication during the late stages of cancer (invasion and metastasis processes).  相似文献   

11.
Shaw RM  Fay AJ  Puthenveedu MA  von Zastrow M  Jan YN  Jan LY 《Cell》2007,128(3):547-560
Gap junctions are intercellular channels that connect the cytoplasms of adjacent cells. For gap junctions to properly control organ formation and electrical synchronization in the heart and the brain, connexin-based hemichannels must be correctly targeted to cell-cell borders. While it is generally accepted that gap junctions form via lateral diffusion of hemichannels following microtubule-mediated delivery to the plasma membrane, we provide evidence for direct targeting of hemichannels to cell-cell junctions through a pathway that is dependent on microtubules; through the adherens-junction proteins N-cadherin and beta-catenin; through the microtubule plus-end-tracking protein (+TIP) EB1; and through its interacting protein p150(Glued). Based on live cell microscopy that includes fluorescence recovery after photobleaching (FRAP), total internal reflection fluorescence (TIRF), deconvolution, and siRNA knockdown, we propose that preferential tethering of microtubule plus ends at the adherens junction promotes delivery of connexin hemichannels directly to the cell-cell border. These findings support an unanticipated mechanism for protein delivery to points of cell-cell contact.  相似文献   

12.
Gap junctions are intercellular channels organized in plaque that directly link adjacent cells. Connexins (Cx), the constitutive proteins of gap junctions are associated with several partner proteins (cytoskeletal, anchoring) which could participate in plaque formation and degradation. Coimmunoprecipitation and indirect immunofluorescence analyses showed that ZO-1, a tight junction-associated protein, was linked to Cx43 in the testis. By using gamma-hexachlorocyclohexane (HCH), known to induce gap junction endocytosis, we demonstrated that endocytosis increased Cx43/ZO-1 association within the cytoplasm of treated Sertoli cells. In control cells, the two proteins were present, as expected, at the plasma membrane level, but poorly colocalized. The increased intracytoplasmic Cx43/ZO-1 complex was associated with a shift towards increased levels of Cx43 P1 and P2 isoforms. The HCH induced Cx43 hyperphosphorylation was abolished by the ERK inhibitor PD98059 suggesting that this effect could be mediated through activation of the ERK pathway. These data strongly support a novel role for ZO-1 in the turnover of Cx43 during gap junction plaque endocytosis.  相似文献   

13.
Gap junctions (GJs) are composed of membrane proteins that form channels connecting the cytoplasm of adjacent cells and permeable to ions and small molecules. They are considered to be the main or only type of intercellular channels and a universal feature of all multicellular animals (Metazoa). Till recently, sea anemones and corals (Anthozoa, Cnidaria) appeared to be an exception from this rule. There were no structural or physiological data supporting the presence of GJ in Anthozoa. For some time no genes homologous to GJ proteins (connexins or pannexins) were detected in sea anemone Nematostella vectensis (Cnidaria, Anthozoa) or other Anthozoa genomes. Recently, pannexin homolog was found in Nematostella. Our intracellular recordings demonstrate electrical coupling between blastomeres in embryos at the 8-cells stage. At the same time, carboxyfluorescein fluorescent dye did not diffuse between electrically coupled cells, which excludes the possibility that the observed electrical coupling is mediated by incomplete cytoplasm separation during the cleavage. These data support the idea that GJ are ubiquitous for Metazoa, and pannexins are universal GJ proteins.  相似文献   

14.
Tubulobulbar complexes may be part of the mechanism by which intercellular adhesion junctions are internalized by Sertoli cells during sperm release. These complexes develop in regions where Sertoli cells are attached to adjacent cells by intercellular adhesion junctions termed ectoplasmic specializations. At sites where Sertoli cells are attached to spermatid heads, tubulobulbar complexes consist of fingerlike processes of the spermatid plasma membrane, corresponding invaginations of the Sertoli cell plasma membrane, and a surrounding cuff of modified Sertoli cell cytoplasm. At the terminal ends of the complexes occur clusters of vesicles. Here we show that tubulobulbar complexes develop in regions previously occupied by ectoplasmic specializations and that the structures share similar molecular components. In addition, the adhesion molecules nectin 2 and nectin 3, found in the Sertoli cell and spermatid plasma membranes, respectively, are concentrated at the distal ends of tubulobulbar complexes. We also demonstrate that double membrane bounded vesicles are associated with the ends of tubulobulbar complexes and nectin 3 is present on spermatids, but is absent from spermatozoa released from the epithelium. These results are consistent with the conclusion that Sertoli cell and spermatid membrane adhesion domains are internalized together by tubulobulbar complexes. PKCalpha, a kinase associated with endocytosis of adhesion domains in other systems, is concentrated at tubulobulbar complexes, and antibodies to endosomal and lysosomal (LAMP1, SGP1) markers label the cluster of vesicles associated with the ends of tubulobulbar complexes. Our results are consistent with the conclusion that tubulobulbar complexes are involved with the disassembly of ectoplasmic specializations and with the internalization of intercellular membrane adhesion domains during sperm release.  相似文献   

15.
Gap junctions between sertoli and germ cells of rat seminiferous tubules   总被引:2,自引:0,他引:2  
Ultrastructural observations of rat seminiferous tubules show clearly the presence of plasma membrane junctions between Sertoli and germ cells in the basal and adluminal compartments. Results obtained from the freeze fracture and thin section techniques were correlated in order to elucidate the nature of these intercellular junctions. We suggest that these intercellular membrane specializations are gap junctions which occur within regions of plasma membrane that also exhibit adherens-like modifications.  相似文献   

16.
Close correlation between tissue transglutaminase (tTG) induction and growth regulation and/or cell death processes has been suggested in many cell lineages. In this study, the regulation of the tTG levels by various growth and differentiation factors and its relation to growth rate and cell death processes were investigated in two rat hepatoma cell lines, McA-RH7777 and McA-RH8994, using a monoclonal antibody against liver tTG. Transforming growth factor-β1 (TGF-β1) and retinoic acid (RA) each increased tTG to the level of 8- to 32-fold above that of control cultures in both cell lines after 72-h treatment. Dexamethasone (DEX) induced a 16- to 32-fold of tTG in McA-RH8994 cells while it did not change the enzyme level in McA-RH7777 cells. Simultaneous addition of DEX and RA increased the tTG level to more than 50-fold in McA-RH7777 cells as well as McA-RH8994 cells. Other factors, such as TGF-α, hepatocyte growth factor, dimethyl sulfoxide, and protein kinase C activator, did not show significant increases of the tTG levels. Although tTG induction by TGF-β1 or DEX appeared to be correlated with their growth suppressive effects, RA increased the tTG level without suppressing the growth rate of hepatoma cells. TGF-β1 was also shown to induce cell death in both cell lines. Our results demonstrate that RA and DEX are capable of modulating the TGF-β1-induced cell death processes independent of the tTG levels. We present evidence here that tTG induction by itself is not the direct cause of growth suppression and cell death in these hepatoma cells.  相似文献   

17.
Connexin (Cx) proteins form intercellular gap junction channels by first assembling into single membrane hemichannels that then dock to connect the cytoplasm of two adjacent cells. Gap junctions are highly specialized structures that allow the direct passage of small molecules between cells to maintain tissue homeostasis. Functional activity of nonjunctional hemichannels has now been shown in several experimental systems. Hemichannels may constitute an important diffusional exchange pathway with the extracellular space, but the extent of their normal physiological role is currently unknown. Aberrant hemichannel activity has been linked to mutations of connexin proteins involved in genetic diseases. Here, we review a proposed role for hemichannels in the pathogenesis of Keratitis-Ichthyosis-Deafness (KID) syndrome associated with connexin26 (Cx26) mutations. Continued functional evaluation of mutated hemichannels linked to human hereditary disorders may provide additional insights into the mechanisms governing their regulation in normal physiology and dysregulation in disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

18.
What appear to be true septate junctions by all techniques currently available for the cytological identification of intercellular junctions are part of a complex junction that interconnects the Sertoli cells of the canine testis. In the seminiferous epithelium, septate junctions are located basal to belts of tight junctions. In thin sections, septate junctions appear as double, parallel, transverse connections or septa spanning an approximately 90-A intercellular space between adjacent Sertoli cells. In en face sections of lanthanum-aldehyde-perfused specimens, the septa themselves exclude lanthanum and appear as electron-lucent lines arranged in a series of double, parallel rows on a background of electron-dense lanthanum. In freeze-fracture replicas this vertebrate septate junction appears as double, parallel rows of individual or fused particles which conform to the distribution of the intercellular septa. Septate junctions can be clearly distinguished from tight junctions as tight junctions prevent the movement of lanthanum tracer toward the lumen, appear as single rows of individual or fused particles in interlacing patterns within freeze-fracture replicas, and are seen as areas of close membrane apposition in thin sections. Both the septate junction and the tight junction are associated with specializations of the Sertoli cell cytoplasm. This is the first demonstration in a vertebrate tissue of a true septate junction.  相似文献   

19.
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  相似文献   

20.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号