首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have examined the somitic cell contribution to the vertebral column of the chick by genetic labeling of sclerotomal cells in early development. Single somites of embryonic Day 2 embryos were filled with retroviral particles containing the lacZ transducing vector BAG. After a further 14 or 17 days of incubation the embryos were fixed and the vertebral column was sectioned and stained histochemically for the lacZ gene product beta-galactosidase. Cells staining for the enzyme were found exclusively on the injected side of two vertebral segments; the staining was largely restricted, however, to the caudal half of the more rostral segment and the rostral half of the next more caudal segment. No embryos were observed with labeling in less than two vertebral segments. Moreover, labeled cells were not uniformly distributed within the labeled region of each vertebra; the neural arch, for example, usually contained a higher proportion of labeled cells than did the centrum. These observations support the concept of resegmentation, whereby a vertebra forms from sclerotomal cells derived from two consecutive somites resulting in a vertebral column shifted by one half segment with respect to the segmented boundaries of the somites. The quantitative distribution of labeled cells in the vertebrae also suggests that sclerotomal cells populate the region of a future vertebral segment in an orderly fashion dependent on when the cells migrate from the somite.  相似文献   

2.
We investigated allometric relationships between vertebral centrum cranial surface areas and body weight and skeletal lumbar length in extant platyrrhine and cercopithecid species. Platyrrhines have smaller lumbar vertebral centra regarding the cranial surface area relative to their body weight than extant catarrhines. However, the stress to the spine of quadrupeds is not only influenced by the body weight but also its length, which contributes to the amount of bending moment. Our results indicated that platyrrhines and cercopithecids have similar lumbar vertebral centrum surface areas when they are scaled on the product of the body weight and skeletal lumbar length. Platyrrhines generally tend to have relatively short lumbar columns for a given body weight. As a result of this tendency, their vertebral centra appear relatively small if only body weight is taken into account. The centrum surface area is rather constant relative to the product of the body weight and skeletal lumbar length within platyrrhines or cercopithecids, despite the fact that skeletal lumbar length is in itself rather variable relative to body weight. This result indicates that the vertebral centrum articular area, the lumbar column length and the body weight are strongly correlated with each other and that such relationships are similar between platyrrhines and cercopithecids. These relationships were observed using both the zygapophyseal and rib definitions of the lumbar vertebrae. However, they were more clearly observed when the zygapophyseal definition was adopted. It appeared that lumbar vertebrae of Proconsul nyanzae (KNM−MW 13142) had distinctively smaller surface areas relative to its body weight and lumbar length than for platyrrhines and cercopithecids, differing from extant hominoids, which have comparatively larger lumbar vertebrae. In the case of Morotopithecus, the lumbar vertebral surface area seems to be as large as in extant platyrrhines and cercopithecids if it had a reduced number of lumbar vertebrae. It is uncertain whether its lumbar vertebral surface area was as large as in extant hominoids. Electronic Publication  相似文献   

3.
The diural caudal skeleton of teleostean actinopterygians develops phylogeneticaily and ontogenetically from a polyural skeleton. The reduction of the polyural anlage to four, three, two or fewer centra in the adult caudal skeleton takes different pathways in different genera (e.g. compare Elops and Albula) and groups of teleosts. As a result, ural centra are not homologous throughout the teleosts. By numbering the ural centra in a homocercal tail in polyural fashion, one can demonstrate these and the following differences. The ventral elements (hypurals) always occur in sequential series, whereas the dorsal elements (epurals and uroneurals) may alter like the ural centra. The number of epurals, five or four in fossil primitive teleosts, is reduced in other primitive and advanced teleosts, but the same epurals are not always lost. The number of uroneurals, seven in fossil teleosts, is reduced in living teleosts, but it has not been demonstrated that the first uroneural is always derived from the neural arch of the same ural centrum. The landmark in the homocercal tail is the preural centrum I which can be identified by (1) bifurcation of the caudal artery and vein in its ventral element, the parhypural, (2) its position directly caudal to the preural centrum (PU2) which supports the lowermost principal caudal ray with its haemal spine, (3) carrying the third hypaxial element ventral to the course of arteria and vena pinnalis, and (4) by carrying the first haemal spine (parhypural) below the dorsal end of the ventral cartilage plate. The study of the development of the vertebral column reveals that teleosts have different patterns of centrum formation. A vertebral centrum is a complete or partial ring of mineralized, cartilaginous or bony material surrounding at least the lateral sides of the notochord. A vertebral centrum may be formed by arcocentrum alone, or arcocentral arcualia and chordacentrum, or arco-, chorda- and autocentrum, or arcocentral arcualia and autocentrum. This preliminary research demonstrates that a detailed ontogenetic interpretation of the vertebral centra and of the caudal skeleton of different teleosts may be useful tools for further interpretations of teleostean interrelationships.  相似文献   

4.
An isolated caudal vertebral centrum of a theropod dinosaur was discovered in the Bauru Basin (Late Cretaceous) of Brazil, in the Maastrichtian São José do Rio Preto Formation. The vertebral centrum has pneumatic features that are similar to those in the megaraptoran theropods Aerosteon, Megaraptor, and Orkoraptor. For example, all these taxa share with the caudal centrum here described the presence of true pleurocoels or pneumatic foramina, immersed within a depression or fossa. Thus, the specimen is considered the first record of Megaraptora in Brazil. The present analysis provides new information on the vertebral caudal anatomy of this clade of bizarre Cretaceous theropods.  相似文献   

5.
The vertebral column results from a controlled segmentation process associated with two main structures, the notochord and the somites. Pathological fusion of vertebral bodies can result from impaired segmentation during embryonic development or occur postnatally. Here, we explore the process of formation and subsequent fusion of the caudalmost vertebral bodies in zebrafish, where fusion is a normal process, mechanically required to support the caudal fin. To reveal whether the product of fusion is on an evolutionary or a developmental scale, we analyze the mode of formation of vertebral bodies, identify transitory rudiments, and characterize vestiges that indicate previous fusion events. Based on a series of closely spaced ontogenetic stages of cleared and stained zebrafish, parasagittal sections, and detection methods for elastin and mineral, we conclude that the formation of the urostyle involves four fusion events. Although fusion of preural 1 (PU1+) with ural 1 (U1) and fusion within ural 2 (U2+) are no longer traceable during centrum formation (phylogenetic fusion), fusion between the compound centrum [PU1++U1] and U2+ (ontogenetic fusion) occurs after individualization of the centra. This slow process is the last fusion and perhaps the latest fusion during the evolution of the zebrafish caudal fin endoskeleton. Newly described characters, such as a mineralized subdivision within U2+, together with the reinterpretation of known features in an evolutionary–developmental context, strongly suggest that the zebrafish caudal fin endoskeleton is made from more fused vertebral bodies than previously assumed. In addition, these fusion events occur at different developmental levels depending on their evolutionary status, allowing the dissection of fusion processes that have taken place over different evolutionary times.  相似文献   

6.
Within the ray-finned fishes, eel-like (extremely elongate) body forms have evolved multiple times from deeper-bodied forms. Previous studies have shown that elongation of the vertebral column may be associated with an increase in the number of vertebrae, an increase in the length of the vertebral centra, or a combination of both. Because the vertebral column of fishes has at least two anatomically distinct regions (i.e. abdominal and caudal), an increase in the number and relative length of the vertebrae could be region-specific or occur globally across the length of the vertebral column. In the present study, we recorded vertebral counts and measurements of vertebral aspect ratio (vertebral length/width) from museum specimens for 54 species representing seven groups of actinopterygian fishes. We also collected, from published literature, vertebral counts for 813 species from 14 orders of actinopterygian and elasmobranch fishes. We found that the number of vertebrae can increase independently in the abdominal and caudal regions of the vertebral column, but changes in aspect ratio occur similarly in both regions. These findings suggest that abdominal vertebral number, caudal vertebral number, and vertebral aspect ratio are controlled by separate developmental modules. Based on these findings, we suggest some candidate developmental mechanisms that may contribute to vertebral column patterning in fishes. Our study is an example of how comparative anatomical studies of adults can generate testable hypotheses of evolutionary changes in developmental mechanisms.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 97–116.  相似文献   

7.
Previous attempts to analyze structure‐function relationships of vertebral centrum patterns in Paleozoic amphibians have been too simplistic and led to vague conclusions. Vertebral movements, as in the human spine, were coupled. Movements and flexibility of the column were correlated with zygapophysis orientation. The essentially notochordal centrum of early tetrapods permitted several widely divergent patterns to arise without compromising load‐bearing capacity. As the osseous centrum became more robust to assume a greater supportive role in later tetrapods, there was less opportunity to remodel its structure. The seymouriamorph pattern permitted limited axial rotation in association with lateral flexure, while the rhachitomous pattern permitted extended axial rotation in association with lateral flexure by distributing movements within its multipartate centrum. The persistence of widely divergent vertebral configurations, regardless of habitat, in later Paleozoic amphibians can be explained at least partly in terms of historical constraint rather than in strict adaptationist terms.  相似文献   

8.
《Journal of morphology》2017,278(3):300-320
The morphological patterns and molecular mechanisms of vertebral column development are well understood in bony fishes (osteichthyans). However, vertebral column morphology in elasmobranch chondrichthyans (e.g., sharks and skates) differs from that of osteichthyans, and its development has not been extensively studied. Here, we characterize vertebral development in an elasmobranch fish, the little skate, Leucoraja erinacea , using microCT, paraffin histology, and whole‐mount skeletal preparations. Vertebral development begins with the condensation of mesenchyme, first around the notochord, and subsequently around the neural tube and caudal artery and vein. Mesenchyme surrounding the notochord differentiates into a continuous sheath of spindle‐shaped cells, which forms the precursor to the mineralized areolar calcification of the centrum. Mesenchyme around the neural tube and caudal artery/vein becomes united by a population of mesenchymal cells that condenses lateral to the sheath of spindle‐shaped cells, with this mesenchymal complex eventually differentiating into the hyaline cartilage of the future neural arches, hemal arches, and outer centrum. The initially continuous layers of areolar tissue and outer hyaline cartilage eventually subdivide into discrete centra and arches, with the notochord constricted in the center of each vertebra by a late‐forming “inner layer” of hyaline cartilage, and by a ring of areolar calcification located medial to the outer vertebral cartilage. The vertebrae of elasmobranchs are distinct among vertebrates, both in terms of their composition (i.e., with centra consisting of up to three tissues layers—an inner cartilage layer, a calcified areolar ring, and an outer layer of hyaline cartilage), and their mode of development (i.e., the subdivision of arch and outer centrum cartilage from an initially continuous layer of hyaline cartilage). Given the evident variation in patterns of vertebral construction, broad taxon sampling, and comparative developmental analyses are required to understand the diversity of mechanisms at work in the developing axial skeleton of vertebrates. J. Morphol. 278:300–320, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
Despite the pervasive occurrence of segmental morphologies in the animal kingdom, the study of segmental growth is almost entirely lacking, but may have significant implications for understanding the development of these organisms. We investigate the segmental and regional growth of the entire vertebral column of the rat (Rattus norvegicus) by fitting a Gompertz curve to length and age data for each vertebra and each vertebral region. Regional lengths are calculated by summing constituent vertebral lengths and intervertebral space lengths for cervical, thoracic, lumbar, sacral, and caudal regions. Gompertz curves allow for the estimation of parameters representing neonatal and adult vertebral and regional lengths, as well as initial growth rate and the rate of exponential growth decay. Findings demonstrate differences between neonatal and adult rats in terms of relative vertebral lengths, and differential growth rates between sequential vertebrae and vertebral regions. Specifically, relative differences in the length of vertebrae indicate increasing differences caudad. Vertebral length in neonates increases from the atlas to the middle of the thoracic series and decreases in length caudad, while adult vertebral lengths tend to increase caudad. There is also a general trend of increasing vertebral and regional initial growth and rate of growth decay caudad. Anteroposterior patterns of growth are sexually dimorphic, with males having longer vertebrae than females at any given age. Differences are more pronounced (a) increasingly caudad along the body axis, and (b) in adulthood than in neonates. Elucidated patterns of growth are influenced by a combination of developmental, functional, and genetic factors.  相似文献   

10.
In dolphins, centrum shape is one of the features that allows determination of stable and flexible regions in the vertebral column. The Commerson's (Cephalorhynchus commersonii; n = 37), Peale's (Lagenorhynchus australis; n = 24), dusky (Lagenorhynchus obscurus; n = 29), and hourglass dolphins (Lagenorhynchus cruciger; n = 10) are closely related species inhabiting the Southern Hemisphere that have diverse prey and habitat preferences. We applied 3D geometric morphometrics to describe differences in centrum shape along the vertebral columns of these species, and hypothesize how these differences may affect swimming. On each column, we chose a maximum of eight vertebrae and digitized 18 landmarks on each centrum with a Microscribe G2X. We explored shape differences amongst regions employing principal components analyses and computing Mahalanobis distances. We describe differences in centrum shape in relation to functional regions and among species; and analyze shape changes in relation to particular biomechanical requirements. The species studied here may be partially sympatric in the Southern Hemisphere, but they have important differences in foraging ecology and habitat preferences that could be related to differences in centrum shape along the vertebral column.  相似文献   

11.
We describe caudosacral and caudal vertebral morphology across life history stages in three caudate amphibians: Ambystoma jeffersonianum (Ambystomatidae), Desmognathus ocoee (Plethodontidae: Desmognathinae), and Hemidactylium scutatum (Plethodontidae: Plethodontinae). All three species have aquatic larvae, but adults differ in habitat and predator defense strategy. Predator defense includes tail autotomy in D. ocoee and H. scutatum but not A. jeffersonianum. Of the species that autotomize, H. scutatum has a specialized constriction site at the tail base. We investigated whether aquatic larvae exhibit vertebral features similar to those previously described for aquatic adults and examined the effect of metamorphosis, if any, on vertebral morphology and the ontogeny of specialized vertebral features associated with tail autotomy. Interspecific comparisons of cleared-and-stained specimens indicate that vertebral morphology differs dramatically at hatching and that caudosacral and caudal vertebrae undergo continuous ontogenetic change throughout larval, metamorphic, and juvenile periods. Larvae and juveniles of H. scutatum do not exhibit adult vertebral features associated with constricted-base tail autotomy. The pond-type larvae of A. jeffersonianum and H. scutatum have tapering centrum lengths posterior to the sacrum. This pattern is functionally associated with aquatic locomotion. The stream-type larvae of D. ocoee undergo enhanced regional growth in the anterior tail such that the anterior caudal centra become longer than the preceding caudosacral centra. With the exception of the first two caudal vertebrae, a similar growth pattern occurs in H. scutatum adults. We hypothesize that enhanced growth of the anterior caudal segments is associated with tail elongation and autotomy.  相似文献   

12.
The salamander tail displays different functions and morphologies in the aquatic and terrestrial stages of species with complex life cycles. During metamorphosis the function of the tail changes; the larval tail functions in aquatic locomotion while the juvenile and adult tail exhibits tail autotomy and fat storage functions. Because tail injury is common in the aquatic environment, we hypothesized that mechanisms have evolved to prevent altered larval tail morphology from affecting normal juvenile tail morphology. The hypothesis that injury to the larval tail would not affect juvenile tail morphology was investigated by comparing tail development and regeneration in Hemidactylium scutatum (Caudata: Plethodontidae). The experimental design included larvae with uninjured tails and with cut tails to simulate natural predation. The morphological variables analyzed to compare normally developing and regenerating tails were 1) tail length, 2) number of caudal vertebrae, and 3) vertebral centrum length. Control and experimental groups do not differ in time to metamorphosis or snout-vent length. Tails of experimental individuals are shorter than controls, yet they display a significantly higher rate of tail growth and less resorption of tail tissue. Anterior to the site of tail injury, caudal vertebrae in juveniles display greater average centrum lengths. Results suggest that regenerative mechanisms are functioning not only to produce structures, but also to influence growth of existing structures. Further investigation of juvenile and adult stages as well as comparative analyses of tail morphology in salamanders with complex life cycles will enhance our understanding of amphibian development and of the evolution of amphibian life cycles. J Morphol 233:15–29, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The ontogeny of amphicoelous vertebrae was studied in Ptyodactylus hasselquistii and Hemidactylus turcicus, and that of procoelous vertebrae, in Sphaerodactylus argus. The embryos were assigned arbitrary stages, drawn to scale, and mostly studied in serial sections. Resegmentation occurs as in all amniotes. A sclerocoel divides each sclerotome into an anterior “presclerotomite” and a denser posterior “postsclerotomite.” Tissue surrounding the intersegmental boundary forms the centrum, which is intersegmental. Tissue around the sclerocoel builds the intervertebral structures, which are midsegmental. In the trunk and neck, postsclerotomites form neural arches, and presclerotomites build zygapophyses. The adult centrum consists of the perichordal primary centrum, plus neural arch bases (= secondary centrum). Between the latter and the arch proper, a neurocentral suture persists until obliterated in maturity. A dorso-ventral central canal persists on either side of the primary centrum, between the latter and the secondary centrum. The notochord becomes true cartilage midvertebrally in all vertebrae, and elastic cartilage intervertebrally in the posterior caudal region. Elsewhere its characteristic tissue persists. Intervertebrally, cervical hypapophyses, caudal chevrons and chevron-bases in the trunk are preformed early in cartilage. Directly ossifying median intercentra are added later in all regions. The first cervical presclerotomite is absent: the hypapophysis (= corpus) of the atlas consists exclusively of postsclerotomitic tissue, there is no proatlas, and the odontoid lacks the apical half-centrum present in other lepidosaurians. In the autotomous caudal region presclerotomites are as prominent as postsclerotomites. Both build neural arches, the two arches of each vertebra remaining distinct and ossifying separately, so that the intersegmental autotomy split persists between them. The last sclerotome is complete, its postsclerotomite forming a half centrum which ossifies. In Sphaerodactylus, while the vertebrae ossify, each intervertebral ring becomes concave anteriorly, convex posteriorly; it remains as a cushion between the condyle and a facet formed by differential growth of the centra. Thus these procoelous centra resemble the amphicoelous centra of Ptyodactylus and Hemidactylus, rather than the procoelus centra of other squamates. The vertebral column of Gekkonoidea closely resembles in its development and microscopical structure that of Sphenodon.  相似文献   

14.
Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size‐matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r2 values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non‐vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Regional variation in the vertebral column of several species of salamanders (families Ambystomatidae, Salamandridae and Plethodontidae) is analyzed. Measurements of three dimensions, centrum length, prezygapophyseal width, and transverse process length, provide the data. Ontogenetic, interspecific, intergeneric and interfamilial patterns of positional variation are diagrammed and discussed. Distinctive patterns of variation characterize the families, genera, and to a lesser extent, the species. The patterns of ambystomatid salamanders are the most generalized, and probably reflect derivation from a primitive ancestral stock. The most specialized conditions occur in the fully terrestrial plethodontids, a group generally considered to be highly derived. Data such as those presented here will aid in the identification of fossils. The patterns described have functional significance. For example, species which have an aquatic larval stage and which return to aquatic breeding sites have vertebrae which taper in length and width behind the pelvis. This is a feature associated with production of a traveling wave in the tail which is necessary for propulsion in water. Fully terrestrial species do not have a tapering column. In them, standing waves, such as occur in the trunk region of all species, typically occur in the tail. The caudal vertebrae of terrestrial species are rather uniform in dimensions for some distance, and the tail is cylindrical in form. Other functionally important features include the narrowing and shortening of some anterior vertebrae, associated with the development of a neck in some species with tongue feeding mechanisms. In contrast, species which use their heads as wedges during locomotion have broadened anterior vertebrae which serve as sites of origin for hypertrophied neck muscles.  相似文献   

16.
Comparison of embryonic specimens with juvenile and mature specimens of other skates indicates that the relative developmental sequence of events is maintained among several taxa within larger clades. However, there is a fundamental difference between the pattern of chondrification and the pattern of calcification in skates. Early in ontogeny a short synarcual surrounds the first free vertebral centrum. Additional neural arch segments are incorporated from anterior to posterior and the relative length of the synarcual cartilage to total length of the body normalizes early. A secondary direction of chondrification, from ventral to dorsal, is also present. Juveniles and subadults show that synarcual calcification is relatively late compared to the calcification of other regions of the skeleton and proceeds from lateral to medial. Comparison with extinct taxa also indicates that there is a decrease in vertebral centrum involvement with the synarcual cartilage over the evolutionary history of the clade. Results from exploratory analyses of morphospace and taxonomy reveal that phylogeny explains part, but not all, of the data on the synarcual in Rajidae. There is evidence of individual and ontogenetic variation among all species of skates examined, however, phylogenetically informative variation prevails. Comparison with other batoids demonstrates a trend where the number of vertebral centra flanked by the synarcual cartilage decreases among more derived taxa indicating a high degree of convergent morphology among batoids with potential functional significance. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Functional morphology of the caudal skeleton in teleostean fishes   总被引:1,自引:0,他引:1  
The basic function of the caudal skeleton in teleostean fishes is to support the caudal fin, but its parts contribute to this function in somewhat different ways. The main axis for this support is the upturned terminal end of the vertebral column, which ends at the base of the uppermost principal rays. The uroneural struts just ahead of this axis provide support for it. The parts of the caudal skeleton behind and below this upturned axis, the hypurals and parhypural, not only support the caudal rays but also provide a means for differential movements between the upper and lower parts of the fin base. This basic caudal skeleton varies with the position of the fish in the sequence of teleosten evolution, the way in which the fish uses its caudal fin, and to some extent with the shape of the fin.  相似文献   

18.
Studies have been made on the lipid composition of total lipids, triglycerides and their fatty acids, cholesterol and phospholipids in the vertebral column of young and adult rabbits. It was shown that the content of total lipids and triglycerides increases, whereas that of cholesterol and phospholipids decreases with age. The content of total lipids in the vertebral column is 10 times higher as compared to that in the bones of the extremities. Mid-thoracic part of the vertebral column exhibits higher lipid content than other thoracic parts of the column. Lipid content of the vertebral processes is lower than that of the vertebral bodies. These data indicate lipid specificity and heterogeneity of bone tissue of the vertebral column. The main fatty acids of vertebral triglycerides are presented by those with 14-18 carbon atoms (90%), no acids with 22 atoms were found. Higher content of the linoleic acid (19%) and higher total unsaturation of triglycerides were found in the bone tissue of rabbits in comparison with those of man.  相似文献   

19.
The first evidence of an ankylosaur from the Late Jurassic Qigu Formation of the southern Junggar Basin (Xinjiang, northwestern China) is described, based on an isolated caudal vertebra that was discovered together with fragmentary remains of other dinosaurs, including stegosaurs, sauropods, and theropods. The caudal vertebra is characterized by the following features: (i) elliptical morphology of the centrum, being wider than high; (ii) short antero-posterior length of the centrum; (iii) pronounced transversely extending ventral groove; (iv) massive transverse process, that is longer than the centrum diameter; (v) transverse process meeting the centrum high at the dorsal half and at a relatively flat angle; (vi) transverse process making a broad contact with the neural arch without forming a proximo-dorsal projection; and (vii) notochordal prominence present in the centre of the anterior articular surface. The study specimen represents only the second record of an ankylosaur from the Jurassic of Asia — aside from the slightly older Tianchisaurus from the early Upper Jurassic Toutunhe Formation, equally from the Junggar Basin. It helps to fill a gap in our knowledge of the early evolution of these armoured dinosaurs. Additionally, this discovery highlights the potential of the southern Junggar Basin to yield a rich vertebrate fauna and thus to provide an important insight into Late Jurassic ecosystems of Central Asia.  相似文献   

20.
The notion that morphological complexity increases in evolution is widely accepted in biology and paleontology. Several possible explanations have been offered for this trend, among them the suggestion that it has an active forcing mechanism, such as natural selection or the second law of thermodynamics. No such mechanism has yet been empirically demonstrated, but testing is possible: if a forcing mechanism has operated, the expectation is that complexity would have increased in evolutionary lineages more frequently than it decreased. However, a quantitative analysis of changes in the complexity of the vertebral column in a random sample of mammalian lineages reveals a nearly equal number of increases and decreases. This finding raises the possibility that no forcing mechanism exists, or at least that it may not be as powerful or pervasive as has been assumed. The finding also highlights the need for more empirical tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号