首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato leaves were detached and stored at 0 C for various periods of time. Chloroplasts were isolated from the leaves and their photoreductive activities were determined. Comparisons were made between two altitudinal forms of the wild tomato Lycopersicon hirsutum Humb. and Bonpl. (a tropical lowlands form and a highlands form adapted to growth at 3,100 meters), and two cultivars of the domestic tomato L. esculentum Mill. In each case the capacity of the isolated chloroplasts to photoreduce ferricyanide declined linearly with time of storage of the leaves at 0 C, but not at 10 C. This injury developed more slowly in the high altitudinal form of the wild tomato compared with the low altitudinal form and the two domestic cultivars indicating an enhanced resistance toward chilling injury in the tomato from 3,100 meters. Chloroplast activity declined in green tomato fruit held at 0 C, at about the same rate as in the chilled leaves.  相似文献   

2.
The mechanism of chilling resistance was investigated in 4-week-old plants of the chilling-sensitive cultivated tomato, Lycopersicon esculentum Mill. cv H722, and rooted cuttings of its chilling-resistant wild relative, L. hirsutum Humb. and Bonpl., which were chilled for 3 days at 2°C with a 14-hour photoperiod and light intensity of 250 micromoles per square meter per second. This chilling stress reduced the chlorophyll fluorescence ratio, stomatal conductance, and dry matter accumulation more in the sensitive L. esculentum than in the resistant L. hirsutum. Photosynthetic CO2 uptake at the end of the chilling treatment was reduced more in the resistant L. hirsutum than in L. esculentum, but recovered at a faster rate when the plants were returned to 25°C. The reduction of the spin trap, Tiron, by isolated thylakoids at 750 micromoles per square meter per second light intensity was taken as a relative indication of the tendency for the thylakoids to produce activated oxygen. Thylakoids isolated from the resistant L. hirsutum with or without chilling treatment were essentially similar, whereas those from chilled leaves of L. esculentum reduced more Tiron than the nonchilled controls. Whole chain photosynthetic electron transport was measured on thylakoids isolated from chilled and control leaves of the two species at a range of assay temperatures from 5 to 25°C. In both species, electron transport of the thylakoids from chilled leaves was lower than the controls when measured at 25°C, and electron transport declined as the assay temperature was reduced. However, the temperature sensitivity of thylakoids from chilled L. esculentum was altered such that at all temperatures below 20°C, the rate of electron transport exceeded the control values. In contrast, the thylakoids from chilled L. hirsutum maintained their temperature sensitivity, and the electron transport rates were proportionately reduced at all temperatures. This sublethal chilling stress caused no significant changes in thylakoid galactolipid, phospholipid, or protein levels in either species. Nonchilled thylakoid membranes from L. hirsutum had fourfold higher levels of the fatty acid 16:1, than those from L. esculentum. Chilling caused retailoring of the acyl chains in L. hirsutum but not in L. esculentum. The chilling resistance of L. hirsutum may be related to an ability to reduce the potential for free radical production by close regulation of electron transport within the chloroplast.  相似文献   

3.
Haploid selection for low temperature tolerance of tomato pollen   总被引:10,自引:1,他引:9       下载免费PDF全文
Zamir D  Tanksley SD  Jones RA 《Genetics》1982,101(1):129-137
Pollen grains were harvested from an interspecific F1 hybrid between the cultivated tomato, Lycopersicon esculentum Mill., and its wild relative Lycopersicon hirsutum Humb. & Bonpl., a low temperature tolerant accession originating from an altitude of 3200 m in the Peruvian Andes. The two species differ for electrophoretically-detectable loci that mark six (possibly seven) of the 12 tomato chromosomes. Isozyme analysis of the BC1 populations derived from controlled pollinations at normal and low temperatures indicates a significant skewing of allelic frequencies favoring two independent chromosome segments of L. hirsutum at low temperatures. The results demonstrate that gametophytic selection for low temperature tolerance of tomato pollen is determined, at least in part, by genes expressed in the haploid pollen.  相似文献   

4.
Summary In vitro pollen germination of cultivated tomato, Lycopersicon esculentum Mill., is inhibited by an ambient temperature of 5°C, more so than pollen from a Peruvian ecotype of Lycopersicon hirsutum Humb. & Bonpl. originating from an altitude of 3200 m. The frequency of L. hirsutum gametes contributing to hybrid zygote formation is more than doubled when controlled fertilizations with pollen mixtures of the two species occurs at 12/6°C as compared to crosses with the same mixtures at 24/19°C. The results suggest that differential selection at the gametophytic level occurs in response to low temperature regimes. To our knowledge this is the first time in higher plants that alteration of an environmental factor has been demonstrated to change selection values of male gametophytes in a fashion predicted by the ecology of the parental sporophytes.  相似文献   

5.
The green-fruited tomato species, Lycopersicon hirsutum, unlike the domesticated red-fruited species, L. esculentum, accumulates sucrose during the final stages of fruit development, concomitant with the loss of soluble acid invertase activity. In order to study the genetic linkage of sucrose accumulation to the invertase gene, part of the invertase gene from L. hirsutum was cloned, sequenced and the sequence compared with the invertase sequence of the red-fruited L. esculentum. Several base changes were found in the coding region of the two invertase genes. Based on these base -pair differences, we developed a species-specific PCR assay capable of determining, in a single PCR reaction, the origin of the invertase gene in segregating seedlings of an interspecific cross. Our results indicate that the invertase gene is genetically linked to sucrose accumulation in the green-fruited L. hirsutum.  相似文献   

6.
Abstract The time during which pollen development is most sensitive to chilling was investigated. Five cultivars of tomato (Lycopersicon esculentum Mill.) bearing flower buds at different stages of development were kept at 7°C for 1 week under 12-h light periods, during which time growth stopped. After returning the plants to minimum temperatures of 18°C, the presence of chromatin in the pollen was assessed daily as the flowers reached anthesis. The results suggested that there are two stages of acute sensitivity to cold during pollen development, each of which results in cold-stressed plants having pollen empty of chromatin. The first and most sensitive stage is about 11.2 d (SE = 0.3 d) before anthesis, and this is followed by a second stage of sensitivity about 5.6±0.2 d before anthesis. Flowers that had wholly developed under simulated natural temperatures that decreased diurnally from a maximum of 18°C to a minimum of 7°C also had defective pollen, but pollen of normal appearance was regained within 14°d on return to higher temperatures. Plants of L. esculentum, and a form (LA 1363) of the wild species L. hirsutum from high altitudes in the Andes, as well as F1 and F3 generations of their hybrid, were grown to the flowering stage at an altitude of 600 m in Hawaii and then grown for a further 30°d at 2000 m, where night temperature was below 10°C. The high altitude environment severely affected the quality of pollen produced and its release from the stamen in L. esculentum, but not in L. hirsutum LA 1363. The results with the hybrids suggested that such tropical mountain environments can be used as a natural phytotron in the selection of chilling resistance that is only expressed in the mature plant.  相似文献   

7.
Water uptake rate of decapitated root systems of cotton (Gossypium hirsutum L.), tomato (Lycopersicon esculentum L. cv. Rutgers), and kidney bean (Phaseolus vulgaris L.) plants shows an exponential increase with applied suction up to about —1 bar. The water uptake rate was higher on the descending path of applied suction than on the ascending path, indicating a hysteresis effect in the roots. The root resistance in a cotton plant increased between 3-to 5-fold during the photoperiod of 12 hours. The water uptake rate increased with increasing temperature of the root medium up to 30°C in cotton and 25°C in tomato and bean plants.  相似文献   

8.
McClean PE  Hanson MR 《Genetics》1986,112(3):649-667
Sequence divergence among the mitochondrial (mt) DNA of nine Lycopersicon and two closely related Solanum species was estimated using the shared fragment method. A portion of each mt genome was highlighted by probing total DNA with a series of plasmid clones containing mt-specific DNA fragments from Lycopersicon pennellii. A total of 660 fragments were compared. As calculated by the shared fragment method, sequence divergence among the mtDNAs ranged from 0.4% for the L. esculentum-L. esculentum var. cerasiforme pair to 2.7% for the Solanum rickii-L. pimpinellifolium and L. cheesmanii-L. chilense pairs. The mtDNA divergence is higher than that reported for Lycopersicon chloroplast (cp) DNA, which indicates that the DNAs of the two plant organelles are evolving at different rates. The percentages of shared fragments were used to construct a phenogram that illustrates the present-day relationships of the mtDNAs. The mtDNA-derived phenogram places L. hirsutum closer to L. esculentum than taxonomic and cpDNA comparisons. Further, the recent assignment of L. pennellii to the genus Lycopersicon is supported by the mtDNA analysis.  相似文献   

9.
Distribution of acid invertase in the tomato plant   总被引:1,自引:0,他引:1  
Acid invertase activity in Lycopersicon esculentum was highest in the locular wall of ripe fruit and lowest in roots. Activity was greater in leaf laminae than in petiole tissue and increased with leaf age, whereas there was more invertase in the upper part of the stem compared with the older portion. Activity in whole fruit increased with increasing ripeness and was greatest in overripe fruit. Of various tissues from a number of wild tomato species examined, the fruit of L. pimpinellifolium were particularly rich in the enzyme, in contrast to the fruit of L. hirsutum, L. hirsutum, var. glabratum and L. peruvianum which had low activity.  相似文献   

10.
A microscope mount was designed so that specimen temperaturescould be monitored and controlled without impairing phase contrastoptics and used to measure rates of protoplasmic streaming between0 and 25 ?C in trichome cells of Lycopersicon esculentum, Lycopersiconhirsutum, Citrullus vulgaris, Tradescantia albiflora, Digitalispurpurea, and Veronica persica. Between 10 and 20 ?C the rates of streaming varied from 2–6µm s–1 depending on the temperature, and differencesbetween the species were small. The temperature coefficientof streaming rates was found to increase as the temperaturewas lowered so that the plot of log rate against temperaturehad a steeper slope at the lower temperatures. The largest temperature cofficients were for the warmth-requiringL. esculentum (tomato) and C. vulgaris (water melon), and thesmallest for the temperate-zone plants V. persica (speedwell)and D. purpurea (foxglove). The changes in rate always occurredover a range of temperature; no ‘critical temperature’wasobserved below which streaming abruptly stopped and above whichit was active, although the amount of streaming as well as therate decreased as the lowest temperatures were approached. The temperatures experienced by the specimens during the experimentdid not affect the recovery of normal streaming rates betweenabout 10 and 20 ?C. In a population of a wild tomato, Lycopersicon hirsutum Humb.and Bonpl., collected from different altitudes in Peru and Ecuador,i.e. from locations of different environmental temperature,the rate of protoplasmic streaming at 5 ?C was greatest in thevarieties collected from the highest altitudes. The resultssuggest that streaming rates correlate with genetic adaptationto low temperature in the species examined.  相似文献   

11.
Growth and photosynthesis of an alloplasmic tomato (cybrid),i.e. line AH47, containing the nuclear genome of the chilling-sensitivecytoplasmic albino mutant of L. esculentum Mill. ‘LargeRed Cherry’ (LRC) and the plastome of a more chilling-toleranthigh-altitude accession of the related wild species L. hirsutumHumb. & Bonpl. LA 1777, were investigated at an optimal(25/20°C) and suboptimal (16/14°C) day/night temperatureregime and their performance compared with that of both euplasmicparents. The cybrid shoot had a similar biomass and developmentrate to the nuclear tomato (L. esculentum) parent at both temperatureregimes. Compared with the biomass production of shoots grownat optimal temperature, the reduction in shoot biomass at suboptimaltemperature was smaller for L. hirsutum than for L. esculentumand the cybrid. This difference was related to a stronger inhibitionof leaf area expansion in L. esculentum and the cybrid in thesuboptimal temperature regime than in L. hirsutum. Irrespectiveof the temperature regime under which the plants were grown,photosynthetic performance and leaf pigment, carbohydrate andsoluble-protein contents of the cybrid resembled those of thenuclear parent. No advantages of the alien L. hirsutum chloroplastwith respect to growth and photosynthesis-related characteristicswere observed in the cybrid in the suboptimal temperature regime,indicating that the temperature sensitivity of the photosyntheticapparatus is regulated by nuclear genes. An adverse consequenceof interspecific chloroplast transfer was the increased susceptibilityto chill-induced photoinhibition of the cybrid. It is concludedthat cybridization is not a useful tool for improving low-temperaturetolerance of tomato. Copyright 2000 Annals of Botany Company Alloplasmic tomato, chloroplast, cybrid(ization), growth, low-temperature tolerance, Lycopersicon esculentum, L. hirsutum, photosynthesis, plastome, tomato  相似文献   

12.
The shoots of cultivated tomato (Lycopersicon esculentum cv. T5) wilt if their roots are exposed to chilling temperatures of around 5 °C. Under the same treatment, a chilling‐tolerant congener (Lycopersicon hirsutum LA 1778) maintains shoot turgor. To determine the physiological basis of this differential response, the effect of chilling on both excised roots and roots of intact plants in pressure chambers were investigated. In excised roots and intact plants, root hydraulic conductance declined with temperature to nearly twice the extent expected from the temperature dependence of the viscosity of water, but the response was similar in both species. The species differed markedly, however, in stomatal behaviour: in L. hirsutum, stomatal conductance declined as root temperatures were lowered, whereas the stomata of L. esculentum remained open until the roots reached 5 °C, and the plants became flaccid and suffered damage. Grafted plants with the shoots of one genotype and roots of another indicated that the differential stomatal behaviour during root chilling has distinct shoot and root components.  相似文献   

13.
We studied the influence of internal ammonium and nitrate contenton the temperature response of ammonium and nitrate uptake inboth chilling sensitive and chilling resistant tomatoes. Threetaxa were examined: Lycopersicon esculentum Mill. cv. T-5, achilling sensitive cultivar, Lycopersicon hirsutum Humb. andBompl. LA 1264, a wild, chilling sensitive accession from thelowlands of Ecuador, and Lycopersicon hirsutum LA1778, a chillingresistant accession from the highlands of Peru. Short exposures(4 h) of L. esculentum cv. T-5 to chilling temperatures irreversiblyinhibited ammonium absorption for at least 6 h. Nitrate absorptionin this taxon and ammonium and nitrate absorption in the L.hirsutum accessions recovered fully and immediately from suchexposures. The chilling resistant accession, L. hirsutum LA1778,showed a lower Q10 for ammonium absorption (1?54?0?10, mean?s.e.)than its chilling sensitive relatives, L. hirsutum LA1264 (2?37?0?35)and L. esculentum cv. T-5 (1?92?0?11). The temperature responseof nitrate absorption depended on internal nitrate status; plantsgrown at high levels of ammonium and nitrate (200 mmol m–3)showed higher Q10's for nitrate uptake (2?29?0?10) than thosedepleted of internal (1?86?0?12). Key words: Lycopersicon, ammonium, nitrate, temperature response, chilling  相似文献   

14.
Stylar proteins involved in the self-incompatible (SI) response ofLycopersicon hirsutum have been identified and mapped to the locus that controls SI (S locus).L. esculentum, a self-compatible (SC) species of cultivated tomato, does not display these proteins. Hybrids between SCL. esculentum and SIL. hirsutum are self-sterile despite these individuals bearing pollen containing theS allele ofL. esculentum. In progeny derived from backcrossing the hybrids toL. esculentum, there was a strong correlation between the presence of theS allele fromL. hirsutum and self-infertility. However, this relationship was uncoupled in a number of backcross (BC) progeny. The SI response appeared to be nonexistent in two self-fertile BC individuals that were heterozygous for theS allele ofL. hirsutum, based on Mendelian segregation of a tightly linked DNA marker,CD15, in selfed progeny. Among these progeny self-fertile individuals that were homozygous for theL. hirsutum allele of the linked marker were also determined to be homozygous for anS-related protein ofL. hirsutum through test crosses withL. esculentum. Therefore, plants were produced that were homozygous for a functionalS allele but were self-fertile. This result and other evidence suggest that theS-related proteins are not sufficient to elicit a self-incompatible response inL. esculentum and that there is a mutation(s) inL. esculentum somewhere other than theS locus that leads to self-compatibility.  相似文献   

15.
Effect of Chilling Temperatures upon Cell Cultures of Tomato   总被引:7,自引:7,他引:0       下载免费PDF全文
The effect of chilling temperatures upon cell cultures of tomato (Lycopersicon esculentum Mill cv `VF36,' and cv `VFNT Cherry,' and L. hirsutum Humb. & Bonpl.) was tested. Doubling times for L. esculentum were 2 to 3 days at 28°C, and 3 to 8 days at 12°C. No growth was observed at 8°C, indicating an abrupt limit to growth between 8 and 12°C. Fluorescein diacetate staining indicated that 80 to 90% of the cells were alive when cells were maintained at 8°C for up to 2 weeks. When cultures kept at 8°C for up to 30 days were transferred to 28°C, growth resumed quickly, and at a rate virtually identical to that for unchilled cells. Similar results were found for cells maintained at 0°C, and for cells of `VFNT Cherry' and of L. hirsutum. Under certain conditions, cultures slowly doubled in fresh weight and cell volume at 8 or 9°C but additional growth at 8°C did not occur, nor could growth be maintained by subculture at 8 or 9°C. The results are contrary to reports that cell cultures of tomato die when exposed to temperatures below 10°C for 1 or 2 weeks. Our observations indicate that chilling temperatures quickly inhibit growth of tomato cells, but do not kill them.  相似文献   

16.
Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10°C but above 0°C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.  相似文献   

17.
The green-fruited Lycopersicon hirsutum Humb. and Bonpl. accumulated sucrose to concentrations of about 118 micromoles per gram fresh weight during the final stages of development. In comparison, Lycopersicon esculentum Mill. cultivars contained less than 15 micromoles per gram fresh weight of sucrose at the ripe stage. Glucose and fructose levels remained relatively constant throughout development in L. hirsutum at 22 to 50 micromoles per gram fresh weight each. Starch content was low even at early stages of development, and declined further with development. Soluble acid invertase (EC 3.2. 1.26) activity declined concomitant with the rise in sucrose content. Acid invertase activity, which was solubilized in 1 molar NaCl (presumably cell-wall bound), remained constant throughout development (about 3 micromoles of reducing sugars (per gram fresh weight) per hour. Sucrose phosphate synthase (EC 2.4.1.14) activity was present at about 5 micromoles of sucrose (per gram fresh weight) per hour even at early stages of development, and increased sharply to about 40 micromoles of sucrose (per gram fresh weight) per hour at the final stages of development studied, parallel to the rise in sucrose content. In comparison, sucrose phosphate synthase activity in L. esculentum remained low throughout development. The possible roles of the sucrose metabolizing enzymes in determining sucrose accumulation are discussed.  相似文献   

18.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO2. Carbon exchange rates were significantly higher in CO2-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO2. This indicates that the long-term decline of photosynthetic efficiency of leaf 5 cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO2 when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO2 concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO2 cannot entirely explain the loss of photosynthetic efficiency of high CO2-grown plants.  相似文献   

19.
Raison JK  Brown MA 《Plant physiology》1989,91(4):1471-1475
The transition temperature of the leaf polar lipids and the critical temperature for chill-induced inhibition of photosynthesis was determined for three altitudinal ecotypes of the wild tomato Lycopersicon hirsutum. Photosynthesis was measured as CO2-dependent O2 evolution at 25°C after leaf slices were exposed to chilling temperatures for 2 hours at a moderate photon flux density of 450 micromoles per square meter per second. The transition temperature of the leaf polar lipids was detected from the change in the temperature coefficient of the fluorescence intensity of trans-parinaric acid. Chill-induced photoinhibition was evident in the three tomato ecotypes when they were chilled below a critical temperature of 10°, 11°, and 13°C, respectively, for the high (LA1777), mid (LA1625), and low (LA1361) altitudinal ecotypes. The temperature differential, below the critical temperature, required to produce a 50% inhibition was also similar for the three ecotypes. A transition was detected in the leaf polar lipids of these plants at a temperature similar to that of the critical temperature for photoinhibition. The results show that the three tomato ecotypes are similar with respect to their critical temperature for chilling-induced photoinhibition and the rate of their response to the chilling stress. They are, thus, similarly sensitive to chilling.  相似文献   

20.
Summary Pollen selection experiments were conducted in tomato to determine the effects of low temperature conditions during pollination on the rate of root elongation of the progeny. Pollen was harvested from an F1 interspecific hybrid between a high altitude Lycopersicon hirsutum accession and the cultivated tomato L. esculentum. The pollen was applied to stigmas of malesterile L. esculentum plants maintained in growth chambers set at either 12°C/7°C or 24°C/18°C. BC1 seeds from the low and normal temperature crosses were germinated and root elongation rate was measured at either 9°C or 24°C. At 9°C, the rate of root elongation for progeny of the low temperature crosses was higher than for progeny of crosses at normal temperatures; at 24°C the rate of root elongation was similar for the two crossing treatments. To compare the temperature responses of the two backcross populations we also calculated the relative inhibitory effect of low temperature on the rate of root elongation: the ratio between the rate of root elongation at 9°C to that at 24°C. Root elongation of seedlings from the low temperature crosses was less inhibited by the cold than root elongation for progeny of the normal temperature crosses. These results suggest a relationship between pollen selection at low temperatures and the expression of a sporophytic trait under the same environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号