首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang J  Zhang J  Liu K  Wang Z  Liu L 《The New phytologist》2006,171(2):293-303
Grain filling is an intensive transportation process regulated by soil drying and plant hormones. This study investigated how the interaction between abscisic acid (ABA) and ethylene is involved in mediating the effects of soil drying on grain filling in wheat (Triticum aestivum). Two wheat cultivars, cv. Yangmai 6 and cv. Yangmai 11, were field-grown, and three irrigation treatments, well-watered, moderately soil-dried (MD) and severely soil-dried (SD), were imposed from 9 d post anthesis until maturity. A higher ABA concentration and lower concentrations of ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) were found in superior grains (within a spike, those grains that were filled earlier and reached a greater size) than in inferior grains (within a spike, those grains that were filled later and were smaller), and were associated with a higher filling rate in the superior grains. An increase in ABA concentration and reductions in ethylene and ACC concentrations in grains under MD conditions increased the grain-filling rate, whereas much higher ethylene, ACC and ABA concentrations under SD conditions reduced the grain-filling rate. Application of chemical regulators gave similar results. The results did not differ between the two cultivars. The grain-filling rate in wheat is mediated by the balance between ABA and ethylene in the grains, and an increase in the ratio of ABA to ethylene increases the grain-filling rate.  相似文献   

2.
The possible relationship between the levels of ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) in the grains and the quality of rice (Oryza sativa L.) were investigated by using 12 rice cultivars. The results showed that both the ethylene evolution rate and ACC content in grains during the grain filling period correlated negatively with head rice production and positively with chalky kernels, chalky size, and chalkiness. The levels of ethylene and ACC were not significantly correlated with alkali spreading value and amylose content. Application of ethephon, an ethylene-releasing agent, or ACC to panicles at the early grain filling stage significantly reduced the rates of brown rice, milled rice, and head rice, and significantly increased the percentage of chalky kernels, chalky size, and chalkiness. Application of aminoethoxyvinylglycine, an inhibitor of ACC synthase, had the opposite effect. Chalkiness appears to be a senescence related phenomenon which is stimulated by ethylene. The results suggest that ethylene and ACC in grains play an important role in regulating rice quality, and that grain appearance and milling quality would be improved though the reduction of ethylene and ACC in grains during grain filling.  相似文献   

3.
This study was to test the hypothesis that polyamines (PAs) and ethylene may be involved in mediating the effect of water deficit on grain filling. Two wheat cultivars, drought-tolerant Shannong16 (SN16) and drought-sensitive Jimai22 (JM22), were used and subjected to well-watered and severe water deficit (SD) during grain filling. SD reduced the weight of superior and inferior grains, by 7.38 and 23.54 % in JM22, 13.8 and 2.2 % in SN16, respectively. Higher free-spermidine (Spd) and free-spermine (Spm) concentration and lower free-putrescine (Put) concentration, ethylene evolution rate (EER) and 1-aminocylopropane-1-carboxylic acid (ACC) concentration were found in superior grains than those in inferior ones. Opposite to the variations of Spd and Spm concentration, ACC, Put concentration and EER were significantly increased under SD. The percentage variation of PAs and ACC differed with cultivars and grain types. ACC concentration of superior and inferior grains under SD increased significantly at 21 days post-anthesis, by 90 and 164 % in JM22, 65 and 13.2 % in SN16, respectively. The equivalent value of Put concentration was 1.04 and 7.9 % in JM22, 34.4 and 10.3 % in SN16. Spd concentration of superior grains showed a higher decrease than that of inferior ones in both cultivars, while Spm exhibited an opposite trend between both grain types. These percentage variations were highly consistent with the differed responses of weight of both grain types to SD in JM22 and SN16. Grain filling rate was negatively correlated with EER and ACC concentration, while positively correlated with Spd and Spm concentration as well as the ratio of Spd or Spm to ACC. Exogenous Spd or aminoethoxyvinylglycine (an inhibitor of ethylene synthesis by inhibiting ACC synthesis) obviously reduced ACC concentration and EER and increased Spd and Spm concentration, while exogenous ethephon (an ethylene-releasing agent) or methylglyoxal-bis (an inhibitor of Spd and Spm synthesis) showed the opposite effects. The results suggested that it would be good for wheat to have the physiological traits of higher Spd and Spm, as well as a higher Spd/ACC or Spm/ACC, under SD.  相似文献   

4.
This study investigated the possibility that abscisic acid (ABA) and cytokinins may mediate the effect of water deficit that enhances plant senescence and remobilization of pre‐stored carbon reserves. Two high lodging‐resistant wheat (Triticum aestivum L.) cultivars were field grown and treated with either a normal or high amount of nitrogen at heading. Well‐watered (WW) and water‐stressed (WS) treatments were imposed from 9 d post‐anthesis until maturity. Chlorophyll (Chl) and photosynthetic rate (Pr) of the flag leaves declined faster in WS plants than in WW plants, indicating that the water deficit enhanced senescence. Water stress facilitated the reduction of non‐structural carbohydrate in the stems and promoted the re‐allocation of prefixed 14C from the stems to grains, shortened the grain filling period and increased the grain filling rate. Water stress substantially increased ABA but reduced zeatin (Z) + zeatin riboside (ZR) concentrations in the stems and leaves. ABA correlated significantly and negatively, whereas Z + ZR correlated positively, with Pr and Chl of the flag leaves. ABA but not Z + ZR, was positively and significantly correlated with remobilization of pre‐stored carbon and grain filling rate. Exogenous ABA reduced Chl in the flag leaves, enhanced the remobilization, and increased grain filling rate. Spraying with kinetin had the opposite effect. The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization and accelerated grain filling rate are attributed to an elevated ABA level in wheat plants when subjected to water stress.  相似文献   

5.
This study was to test the hypothesis that polyamines (PAs) and ethylene and their interactions may be involved in mediating the post-anthesis development of spikelets in rice (Oryza sativa L.). Six rice cultivars differing in grain filling rate were field-grown, and the changing patterns of PAs and ethylene levels in rice spikelets during the filling and their relations with grain filling rates were investigated. The results showed that inferior spikelets had much greater ethylene evolution rate and 1-aminocylopropane-1-carboxylic acid (ACC) concentration than superior spikelets. Opposite to ethylene production, superior spikelets showed much higher free-spermidine (Spd) and free-spermine (Spm) concentrations than inferior spikelets. Grain filling rate was very significantly and negatively correlated with ethylene evolution rate and ACC concentration, whereas positively correlated with free-Spd and free-Spm concentrations and with the ratio of free-Spd or free-Spm to ACC. Application of Spd, Spm, or aminoethoxyvinylglycine (an inhibitor of ethylene synthesis by inhibiting ACC synthesis) to panicles at the early grain filling stage significantly reduced ethylene evolution rate and ACC concentration, while significantly increased Spd and Spm concentrations, grain filling rate and grain weight of inferior spikelets. Application of ACC, ethephon (an ethylene-releasing agent), or methylglyoxal-bis (guanylhydrazone) (an inhibitor of Spd and Spm synthesis) showed the opposite effects. The results suggest that antagonistic interactions between PAs (Spd and Spm) and ethylene may be involved in mediating grain filling. A higher ratio of free-Spd or free-Spm to ethylene in rice spikelets could enhance grain filling.  相似文献   

6.
Yang J  Zhang J  Wang Z  Zhu Q  Wang W 《Plant physiology》2001,127(1):315-323
Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed (14)C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.  相似文献   

7.
The purpose of this study was to test the hypothesis that the interaction between abscisic acid (ABA) and ethylene may be involved in mediating the post-anthesis development of spikelets in rice (Oryza sativa L.). Two rice genotypes were field-grown, and the changes of ABA, ethylene, and 1-aminocylopropane-1-carboxylic acid (ACC) levels in spikelets during grain filling and their relationships with endosperm-division and grain-filling rates were investigated. The results showed that earlier-flowering superior spikelets exerted dominance over later-flowering inferior spikelets in endosperm cell-division and grain-filling rates. The two genotypes behaved the same. Later-flowering spikelets had higher levels of ethylene and ACC than earlier-flowering spikelets. The ethylene evolution rate was significantly and negatively correlated with the cell division and grain filling rates. By contrast to ethylene, later-flowering spikelets contained a lower ABA content/concentration and showed a low content ratio of ABA to ACC than earlier-flowering ones. The cell-division and grain-filling rates were significantly and positively correlated with both ABA contents and the ratio of ABA to ACC. Application of cobalt ion (inhibitor of ethylene synthesis) or ABA at an early grain-filling stage significantly increased endosperm cell division rate and cell number, grain-filling rate, and grain weight of inferior spikelets. Application of ethephon (an ethylene-releasing agent) or fluridone (an inhibitor of carotenoid synthesis) had the opposite effect. The results suggest that antagonistic interactions between ABA and ethylene mediate endosperm cell-division and grain-filling in rice. A higher ratio of ABA to ethylene in rice spikelets is required to maintain a faster grain-filling rate.  相似文献   

8.
Two genetically related wheat lines growing in cabinets were given different temperatures during grain filling, and abscisic acid (ABA) was measured in whole grains by gas chromatography with an electron-capture detector. Three genetically related barley lines grown in the field were assayed for ABA content in endosperm and embryo fractions separately by radiommunoassay.Maximum grain growth rate and final weight per grain of the two wheat lines differed by 50–60% at low temperature and 30–40% at high temperature. During grain development two peaks in ABA level were observed at low temperature but only one at high temperature. At times when differences in grain growth rate between genotypes and between temperature treatments were large, the corresponding differences in ABA concentration were small. In barley, one line (Iabo 14) had 30% heavier grains than the other two (Onice and Opale). Endosperm ABA concentrations showed no clear differences between genotypes until grain filling was nearly complete. Embryo ABA levels were up to 10-times greater than those in the endosperm, with Opale having significantly less ABA in the embryo than the other two cultivars.Our experiments did not provide evidence for a causal relationship between ABA levels during grain filling and grain growth rate or final weight.Abbreviations ABA Abscisic acid - DAA days after anthesis - DW dry weight - FW fresh weight  相似文献   

9.
This study tested the hypothesis that polyamines (PA) and ethylene (ETH) mediate the effects of soil drought on spikelet development in rice (Oryza sativa L.). Two rice cultivars, Yong You-2640 and Yang Dao-6, with vastly different panicle sizes were grown in pots under three soil moisture treatments: well-watered (WW), moderate soil drought (MD) and severe soil drought (SD), from the onset of panicle initiation to the pollen completion stage. MD treatment significantly increased spikelet differentiation, spikelet number per panicle, fully filled grain percentage and grain yield, decreasing the percentage of degenerated spikelets, sterile spikelets and partially filled grains compared to WW treatment. In contrast, SD treatment showed opposite effects. MD also increased the contents of free spermidine (Spd), free spermine (Spm) and the ratios of free putrescine, free-Spd and free-Spm to 1-aminocylopropane-1-carboxylic acid (ACC), decreasing the ETH evolution rate and ACC content in young panicles. In contrast, SD treatment showed opposite effects. Furthermore, free-Spd and free-Spm contents increased significantly, while ETH and ACC levels, and the percentage of degenerated and sterile spikelets decreased significantly under application of Spd or an inhibitor of ETH synthesis. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. These findings suggest antagonistic interactions between free-PA (Spd and Spm) and ETH in response to soil drought, mediating spikelet development in rice.  相似文献   

10.
Inferior spikelets usually exhibit a slower grain filling rate and lower grain weight than superior spikelets in a rice (Oryza sativa L.) panicle. This study investigated whether the variations in grain filling between the two kinds of spikelets were attributed to their sink strength and whether the sink strength was regulated by the hormonal levels in the grains. Using two field-grown rice genotypes, the division rate of endosperm cells, hormonal levels in the grains, and grain weight of both superior and inferior spikelets were determined during the grain filling period. The results showed that superior spikelets had dominance over inferior spikelets in endosperm cell division rate and cell number, grain filling and grain weight. Changes in zeatin (Z) and zeatin riboside (ZR) contents paralleled and were very significantly correlated with the cell division rate and cell number. Cell division rate and the content of indole-3-acetic acid (IAA) in the grains were also significantly correlated. Gibberellin (GAs; GA1+ GA4) content of the grains was high but ABA levels were low at the early grain filling stage. ABA increased substantially during the linear phase of grain growth and was very significantly correlated with grain dry weight during this period. Application of kinetin at 2 through 6 days post anthesis (DPA) significantly increased cell number, while spraying ABA at 11 through 15 DPA significantly increased the grain filling rate. The results suggest that differences in sink strength are responsible for variations in grain filling between superior and inferior spikelets. Both cytokinins and IAA in the grains may mediate cell division in rice endosperm at early grain filling stages, and therefore regulate the sink size of the grain, whereas ABA content correlates with sink activity during the linear period of grain growth.  相似文献   

11.
Two litchi cultivars, a well-coloured ‘Nuomici’ and a poorly coloured ‘Feizixiao’, were used to investigate changes in endogenous abscisic acid (ABA) concentration and ethylene production during fruit maturation and to test the effects of exogenous growth regulators on litchi fruit maturation. Abscisic acid concentration in both the aril and pericarp increased with fruit maturation. Transfusion of ABA into the fruit 3 weeks before harvest accelerated, whereas transfusion of 6-benzyl aminopurine (6-BA) retarded sugar accumulation and pigmentation. The effect of 6-BA was assumed to link with the resultant decrease in ABA. In contrast, 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC oxidase (ACO) activities in the aril remained relatively constant during sugar accumulation. Transfusion of aminooxyacetic acid (AOA) significantly decreased ACC concentration but had no effect on sugar accumulation in the aril. These results suggested that endogenous ABA, but not ethylene, was critical for the sugar accumulation. However, the roles of ABA and ethylene in pericarp pigmentation were rather complicated. Application of exogenous ABA promoted anthocyanin synthesis significantly, but had very little effect on chlorophyll degradation. Ethylene production in litchi fruit decreased with development, but a transient increase of endogenous ethylene production was detected just around the colour break in ‘Nuomici’. Enhanced ACO activity in the pericarp was detected during pigmentation. Ethrel at 400 mg l−1 showed no effect on pericarp coloration, but accelerated chlorophyll degradation and anthocyanin synthesis at a much higher concentration (800 mg l−1). Fruit dipped in ABA solution alone yielded no effect on chlorophyll degradation, but the combined use of ABA and Ethrel at 400 mg l−1 enhanced both chlorophyll degradation and anthocyanin synthesis. These results indicated the possible synergistic action of ethylene and ABA during litchi fruit colouration. ABA is suggested to play a more crucial role in anthocyanin synthesis, while ethylene is more important in chlorophyll degradation. ABA can increase the sensitivity of pericarp tissue to ethylene.  相似文献   

12.
This study investigated whether and how the interaction between abscisic acid (ABA) and ethylene is involved in the regulation of rice (Oryza sativa L.) spikelet sterility when subjected to water stress during meiosis. Two rice cultivars, HA-3 (drought-resistant) and WY-7 (drought-susceptible), were used and subjected to well-watered and water-stressed (WS) treatments during meiosis (15–2 days before heading). Leaf water potentials of both cultivars markedly decreased during the day as a result of the WS treatment, but panicle water potentials remained constant. The percentage of sterile spikelets in WS plants was increased by 49.7% for WJ-7 but only 12.7% for HA-3. ABA, ethylene, and 1-aminocyclopropane-1-carboxylic acid were all enhanced in spikelets by the water stress, but ethylene was enhanced more than ABA in WY-7 when compared with that in HA-3. Spikelet sterility was significantly reduced when ABA or amino-ethoxyvinylglycine, an inhibitor of ethylene synthesis, was applied to the panicles of WS plants at the early meiosis stage. Application of ethephon, an ethylene-releasing agent, or fluridone, an inhibitor of ABA synthesis, had the opposite effect, and sterility was increased. The results suggest that antagonistic interactions between ABA and ethylene may be involved in mediating the effect of water stress on spikelet fertility. A higher ratio of ABA to ethylene would be a physiologic trait of rice adaptation to water stress.  相似文献   

13.
春小麦水分胁迫响应中的ACC、MACC合成及乙烯的释放   总被引:4,自引:0,他引:4  
水分胁迫使两个抗旱性不同的春小麦 (TriticumaestivumL .)品种“8139”(抗旱性较弱 )和“5 0 4”(抗旱性较强 )叶片ACC和MACC含量于胁迫初期下降后期升高 ,ACC合酶活性持续升高 ,乙烯释放量在 8139中下降而在5 0 4中先大幅升高而后下降。两种作用效果相反的抑制剂MGBG (抑制SAMDC活性 )和AOA (抑制ACC合酶活性 )均明显影响了两品种春小麦叶片以上各指标的变化。结果表明 ,水分胁迫下作物乙烯的释放量并不与其合成直接前体ACC的量成正相关 ;胁迫乙烯在抗性品种中于胁迫初期的升高可能是植物胁迫信号传导的响应之一 ,是一种干旱适应现象 ,可能与作物的干旱忍耐形成有关 ,而MACC具有调节胁迫乙烯释放的特殊生理作用。  相似文献   

14.
Changes in ethylene production and in the contents of 1-aminocydopropane-1-carboxylic acid (ACC), 1-(malonylamin6)-cyclopropane-1-carboxylic acid (MACC), abscisic acid (ABA) and L-proline were determined after 40 days of cold hardening at 4°C in three wheat cultivars differing in frost resistance. Proline and especially ABA accumulated with hardening in all varieties in parallel with the degree of frost resistance, e.g. proline and ABA increases in the non-resistant cv. Slávia were 2x and 5x, whilst in the resistant cv. Mironovská 808 increases were 4X and 20X. Ethylene production and MACC level showed no significant changes with hardening in any of the cultivars after 40 d, but ACC levels did increase with hardening. The production of ethylene, ACC and MACC was studied during hardening. Ethylene production decreased sharply at low temperature and rose rapidly (within 1 day) on return to normal temperature, while ACC production reacted in the opposite direction. MACC levels rose rapidly during the first 4 days of cold, then more slowly for about 2 weeks, thereafter decreasing again steadily. The only varietal differences occurring at maximum levels were correlated with the degree of frost resistance.  相似文献   

15.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

16.
17.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

18.
George J. P. Murphy 《Planta》1984,160(3):250-255
Metabolism of R,S-[2-14C]abscisic acid (ABA) was studied in detached leaves of six wheat (Triticum aestivum) cultivars, using non-stressed leaves or leaves water stressed by desiccation to 90% of their original fresh weight. The rate constant of ABA metabolism was similar in nonstressed leaves of all cultivars. Water stress resulted in significantly lower rate constants in two cultivars which accumulated high levels of ABA when stressed, the constants decreasing by a factor of about 1.5. Rate constants for the remainder of the cultivars were not significantly different from those for the non-stressed controls. It was calculated that if decreased metabolism was the mechanism for the accumulation of ABA following water stress the rate constants of metabolism would have to be reduced by a factor of between 25 and 70. The results therefore support the hypothesis that enhanced synthesis rather than reduced degradation is the main process by which ABA levels are elevated following experimentally induced water stress. There were differences between the six cultivars in the products of ABA metabolism. Over the time period studied, oxidation to phaseic acid and dihydrophaseic acid as well as to other unidentified metabolites appeared to be the predominant pathway of ABA metabolism, rather than conjugation to ABA glucose ester and other more polar compounds.Abbreviations ABA abscisic acid - ABAGE abscisic-acid glucose ester - DPA dihydrophaseic acid - PA phaseic acid  相似文献   

19.
Yang J  Zhang J  Wang Z  Xu G  Zhu Q 《Plant physiology》2004,135(3):1621-1629
This study tested the hypothesis that a controlled water deficit during grain filling of wheat (Triticum aestivum) could accelerate grain-filling rate through regulating the key enzymes involved in Suc-to-starch pathway in the grains. Two high lodging-resistant wheat cultivars were field grown. Well-watered and water-deficit (WD) treatments were imposed from 9 DPA until maturity. The WD promoted the reallocation of prefixed 14C from the stems to grains, shortened the grain-filling period, and increased grain-filling rate or starch accumulation rate (SAR) in the grains. Activities of Suc synthase (SuSase), soluble starch synthase (SSS), and starch branching enzyme (SBE) in the grains were substantially enhanced by WD and positively correlated with the SAR. ADP Glc pyrophosphorylase activity was also enhanced in WD grains initially and correlated with SAR with a smaller coefficient. Activities of granule-bound starch synthase and soluble and insoluble acid invertase in the grains were less affected by WD. Abscisic acid (ABA) content in the grains was remarkably enhanced by WD and very significantly correlated with activities of SuSase, SSS, and SBE. Application of ABA on well-watered plants showed similar results as those by WD. Spraying with fluridone, an ABA synthesis inhibitor, had the opposite effect. The results suggest that increased grain-filling rate is mainly attributed to the enhanced sink activity by regulating key enzymes involved in Suc-to-starch conversion, especially SuSase, SSS, and SBE, in wheat grains when subjected to a mild water deficit during grain filling, and ABA plays a vital role in the regulation of this process.  相似文献   

20.
1 Introduction The simple gaseous phytohormone ethylene as apotent modulator has various roles in plant growth,development and in response to biotic and abioticstress, such as germination, fruit ripening, flower andleaf senescence, and responsiveness to pathogen attack and mechanical damage[1]. The opening and senes-cence of many kinds of flowers are correlated tightly to ethylene, including carnation, petunia, orchid and rose[2]. Generally, roses are classified as ethylene-sen-sitive, however…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号