首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence-dependent flexibility in promoter sequences   总被引:7,自引:0,他引:7  
The non-neighbor interactions between base-pairs were taken into account to calculate the angular parameters (Omega, rho and tau) describing the orientation of successive base-pair planes and the translation parameters (D(y)) along the long axis of base-pair steps for 36 independent tetramers. A statistical mechanical model was proposed to predict the DNA flexibility that is mainly related to the thermal fluctuations at individual base-pair steps. The DNA flexibility can be described by the root-mean-square deviation of the end-to-end distance of DNA helical structure. The present model was then used to investigate the extreme flexible pattern in prokaryotic and eukaryotic promoter sequences. The results demonstrated several extreme flexible regions related to functionally important elements exist both in prokaryotic promoters and in eukaryotic promoters, DNA flexibility and AT content are highly correlated. The probabilities finding flexibility pattern in promoter sequences were also estimated statistically. The biological implications were discussed briefly.  相似文献   

2.
The traditional mesoscopic paradigm represents DNA as a series of base-pair steps whose energy response to equilibrium perturbations is elastic, with harmonic oscillations (defining local stiffness) around a single equilibrium conformation. In addition, base sequence effects are often analysed as a succession of independent XpY base-pair steps (i.e. a nearest-neighbour (NN) model with only 10 unique cases). Unfortunately, recent massive simulations carried out by the ABC consortium suggest that the real picture of DNA flexibility may be much more complex. The paradigm of DNA flexibility therefore needs to be revisited. In this article, we explore in detail one of the most obvious violations of the elastic NN model of flexibility: the bimodal distributions of some helical parameters. We perform here an in-depth statistical analysis of a very large set of MD trajectories and also of experimental structures, which lead to very solid evidence of bimodality. We then suggest ways to improve mesoscopic models to account for this deviation from the elastic regime.  相似文献   

3.
4.
Experimental evidence suggests DNA mechanical properties, in particular intrinsic curvature and flexibility, have a role in many relevant biological processes. Systematic investigations about the origin of DNA curvature and flexibility have been carried out; however, most of the applied experimental techniques need simplifying models to interpret the data, which can affect the results. Progress in the direct visualization of macromolecules allows the analysis of morphological properties and structural changes of DNAs directly from the digitised micrographs of single molecules. In addition, the statistical analysis of a large number of molecules gives information both on the local intrinsic curvature and the flexibility of DNA tracts at nanometric scale in relatively long sequences. However, it is necessary to extend the classical worm-like chain model (WLC) for describing conformations of intrinsically straight homogeneous polymers to DNA. This review describes the various methodologies proposed by different authors.  相似文献   

5.
DNA cyclization is potentially the most powerful approach for systematic quantitation of sequence-dependent DNA bending and flexibility. We extend the statistical mechanics of the homogeneous DNA circle to a model that considers discrete basepairs, thus allowing for inhomogeneity, and apply the model to analysis of DNA cyclization. The theory starts from an iterative search for the minimum energy configuration of circular DNA. Thermodynamic quantities such as the J factor, which is essentially the ratio of the partition functions of circular and linear forms, are evaluated by integrating the thermal fluctuations around the configuration under harmonic approximation. Accurate analytic expressions are obtained for equilibrium configurations of homogeneous circular DNA with and without bending anisotropy. J factors for both homogeneous and inhomogeneous DNA are evaluated. Effects of curvature, helical repeat, and bending and torsional flexibility in DNA cyclization are analyzed in detail, revealing that DNA cyclization can detect as little as one degree of curvature and a few percent change in flexibility. J factors calculated by our new approach are well consistent with Monte Carlo simulations, whereas the new theory has much greater efficiency in computations. Simulation of experimental results has been demonstrated.  相似文献   

6.
Computer simulation of the dynamic structure of DNA can be carried out at various levels of resolution. Detailed high resolution information about the motions of DNA is typically collected for the atoms in a few turns of double helix. At low resolution, by contrast, the sequence-dependence features of DNA are usually neglected and molecules with thousands of base pairs are treated as ideal elastic rods. The present normal mode analysis of DNA in terms of six base-pair "step" parameters per chain residue addresses the dynamic structure of the double helix at intermediate resolution, i.e., the mesoscopic level of a few hundred base pairs. Sequence-dependent effects are incorporated into the calculations by taking advantage of "knowledge-based" harmonic energy functions deduced from the mean values and dispersion of the base-pair "step" parameters in high-resolution DNA crystal structures. Spatial arrangements sampled along the dominant low frequency modes have end-to-end distances comparable to those of exact polymer models which incorporate all possible chain configurations. The normal mode analysis accounts for the overall bending, i.e., persistence length, of the double helix and shows how known discrepancies in the measured twisting constants of long DNA molecules could originate in the deformability of neighboring base-pair steps. The calculations also reveal how the natural coupling of local conformational variables affects the global motions of DNA. Successful correspondence of the computed stretching modulus with experimental data requires that the DNA base pairs be inclined with respect to the direction of stretching, with chain extension effected by low energy transverse motions that preserve the strong van der Waals' attractions of neighboring base-pair planes. The calculations further show how one can "engineer" the macroscopic properties of DNA in terms of dimer deformability so that polymers which are intrinsically straight in the equilibrium state exhibit the mesoscopic bending anisotropy essential to DNA curvature and loop formation.  相似文献   

7.
8.
9.
DNA动力学柔性的统计力学模型   总被引:3,自引:1,他引:2  
考虑碱基对之间的非紧邻相互作用、涨落的序列依赖效应和非对称涨落,提出了DNA构象的统计力学模型,给出了DNA柔性的新定义。作为模型的应用,对12种三核苷酸重复序列的动力学柔性作了预测。理论预测与其它方法得到的结论比较,有很好的一致性。对模型和结论的理论意义作了讨论。  相似文献   

10.
Molecular dynamics (MD) simulations were performed for investigating the role of Gln50 in the engrailed homeodomain-DNA recognition. Employing the crystal structure of free engrailed homeodomain and homeodomain-DNA complex as a starting structure, we carried out MD simulations of: (i) the complex between engrailed homeodomain and a 20 base-pair DNA containing TAATTA core sequence; (ii) the free engrailed homeodomain. The simulations show that homeodomain flexibility does not depend on its ligation state. The engrailed homeodomain shows similar flexibility, and the recognition helix-3 shows very similar characteristic of high rigidity and limited conformational space in two complexation states. At the same time, DNA structure has also no obvious conformational fluctuations. These results preclude the possibility of the side chain of Gln50 forming direct hydrogen bonds to the core DNA bases. MD simulations confirm a few well-conserved sites for water-mediated hydrogen bonds from protein to DNA are occupied by water molecules, and Gln50 interacts with corresponding core DNA bases through water-mediated hydrogen bonds. So Gln50 plays a relatively modest role in determining the affinity and specificity of the engrailed homeodomain. In addition, the electrostatic interaction between homeodomain and phosphate backbone of the DNA is a main factor for N- and C-terminal arm becoming ordered upon DNA binding.  相似文献   

11.
Fluctuations in superhelical DNA.   总被引:7,自引:1,他引:6       下载免费PDF全文
The effect of superhelicity on the base-pair opening probability and on the probability of occurrence of cruciform states in palindromic regions is theoretically treated. The calculations show that below the superhelix density value of -sigma=0.05 superhelicity does not appreciably affect the characteristics of DNA secondary structure fluctuations. In the range of physiological superhelix densities sigma (-sigma=0.05-0.09) the base-pair opening probability markedly increases. However, within this range of sigma the base-pairs are opened only transiently and permanently open regions are not formed. Permanently opened regions appear at higher negative superhelix densities (-sigma greater than 0.10). At the values of -sigma higher than 0.06 a cruciform structure in the palindromic region centred in position 3965 proves to be the most probable fluctuational disturbance in the 0x174 duplex DNA. Different experimental approaches used for probing the fluctuations in superhelical DNA have been analysed. The results suggest that most direct quantitative information can be derived from data on the nicking of closed DNA by single strand-specific endonucleases. Such data (Wang, 1974) accord with the results of theoretical calculations. Calculations show that, due to base-pair opening, the total free energy of superhelical DNA should depend parabolically on sigma only up to some critical value of sigma=sigmac. If negative superhelicity exceeds this critical value, which under physiological conditions proves to be -sigma=0.085, the free energy should increase linearly with -sigma. The biological role of supercoiling is discussed in the light of obtained results.  相似文献   

12.
A theoretical model for predicting nucleosome thermodynamic stability in terms of DNA sequence is advanced. The model is based on a statistical mechanical approach, which allows the calculation of the canonical ensemble free energy involved in the competitive nucleosome reconstitution. It is based on the hypothesis that nucleosome stability mainly depends on the bending and twisting elastic energy to transform the DNA intrinsic superstructure into the nucleosomal structure. The ensemble average free energy is calculated starting from the intrinsic curvature, obtained by integrating the dinucleotide step deviations from the canonical B-DNA and expressed in terms of a Fourier series, in the framework of first-order elasticity. The sequence-dependent DNA flexibility is evaluated from the differential double helix thermodynamic stability. A large number of free-energy experimental data, obtained in different laboratories by competitive nucleosome reconstitution assays, are successfully compared to the theoretical results. They support the hypothesis that the stacking energies are the major factor in DNA rigidity and could be a measure of DNA stiffness. A dual role of DNA intrinsic curvature and flexibility emerges in the determination of nucleosome stability. The difference between the experimental and theoretical (elastic) nucleosome-reconstitution free energy for the whole pool of investigated DNAs suggests a significant role for the curvature-dependent DNA hydration and counterion interactions, which appear to destabilize nucleosomes in highly curved DNAs. This model represents an attempt to clarify the main features of the nucleosome thermodynamic stability in terms of physical-chemical parameters and suggests that in molecular systems with a large degree of complexity, the average molecular properties dominate over the local features, as in a statistical ensemble.  相似文献   

13.
Curvature and flexibility are structural properties of central importance to genome function. However, due to the difficulties in finding suitable experimental conditions, methods for studying one without the interference of the other have proven to be difficult. We propose a new approach that provides a measure of inherent flexibility of DNA by taking advantage of two powerful techniques, X-ray crystallography and nuclear magnetic resonance. Both techniques are able to detect local curvature on DNA fragments but, while the first analyzes DNA in the solid state, the second works on DNA in solution. Comparison of the two data sets allowed us to calculate the relative contribution to flexibility of the three rotations and three translations, which relate successive base pair planes for the ten different dinucleotide steps. These values were then used to compute the variation of flexibility along a given nucleotide sequence. This allowed us to validate the method experimentally through comparisons with maps of local fluctuations in DNA molecule trajectory constructed from atomic force microscopy imaging in solution. We conclude that the six dinucleotide-step parameters defined here provide a powerful tool for the exploration of DNA structure and, consequently will make an important contribution to our understanding of DNA-sequence-dependent biological processes.  相似文献   

14.
15.
This paper reports a study of the sequence-dependent DNA curvature and flexibility based on scanning force microscopy (SFM) images. We used a palindromic dimer of a 1878-bp pBR322 fragment and collected a large pool of SFM images. The curvature of each imaged chain was measured in modulus and direction. It was found that the ensemble curvature modulus does not allow the separation of static and dynamic contributions to the curvature, whereas the curvature, when its direction in the two dimensions is taken into account, permits the direct separation of the intrinsic curvature contributions static and dynamic contributions. The palindromic symmetry also acted as an internal gauge of the validity of the SFM images statistical analysis. DNA static curvature resulted in good agreement with the predicted sequence-dependent intrinsic curvature. Furthermore, DNA sequence-dependent flexibility was found to correlate with the occurrence of A.T-rich dinucleotide steps along the chain and, in general, with the normalized basepair stacking energy distribution.  相似文献   

16.
Both thermal fluctuations and the intrinsic curvature of DNA contribute to conformations of the DNA axis. We looked for a way to estimate the relative contributions of these two components of the double-helix curvature for DNA with a typical sequence. We developed a model and Monte Carlo procedure to simulate the Boltzmann distribution of DNA conformations with a specific intrinsic curvature. Two steps were used to construct the equilibrium conformation of the model chain. We first specified the equilibrium DNA conformation at the base pair level of resolution, using a set of the equilibrium dinucleotide angles and DNA sequence. This conformation was then approximated by the conformation of the model chain consisting of a reduced number of longer, straight cylindrical segments. Each segment of the chain corresponded to a certain number of DNA base pairs. We simulated conformational properties of nicked circular DNA for different sets of equilibrium dinucleotide angles, different random DNA sequences, and lengths. Only random sequences of DNA generated with equal probability of appearance for all types of bases at any site of the sequence were used. The results showed that for a broad range of intrinsic curvature parameters, the radius of gyration of DNA circles should be nearly independent of DNA sequence for all DNA lengths studied. We found, however, a DNA properly that should strongly depend on DNA sequence if the double helix has essential intrinsic curvature. This property is the equilibrium distribution of the linking number for DNA circles that are 300-1000 bp in length. We found that a large fraction of the distributions corresponding to random DNA sequences should have two separate maxima. The physical nature of this unexpected effect is discussed. This finding opens new opportunities for joined experimental and theoretical studies of DNA intrinsic curvature.  相似文献   

17.
18.
In this study, we have systematically compared the uranyl photocleavage of a range of bent A-tracts and nonbent TA-tracts as well as interrupted A-tracts. We demonstrate that uranyl photocleavage of A-tracts and TA-tracts is almost identical, indicating a very similar minor groove conformation. Furthermore, a 10 base pair A-tract is divided into two independent tracts by an intervening TA or GC step. Uranyl probing also clearly distinguishes the bent A4T4 and the nonbent T4A4 sequences as adopting different structures, and our interpretation of the data is consistent with a structure for the bent A4T4 sequence that resembles a continuous A-tract, whereas the nonbent T4A4 sequences are closer to two independent and opposite A-tracts that cancel each other in terms of macroscopic bending. Finally, we also note that even single TA and TAT steps are highly sensitive to uranyl photocleavage and propose that in addition to average minor groove width, uranyl also senses DNA helix flexibility/deformability. Thus, the structural difference of TA-tracts and A-tracts may to a large extent reflect a difference in flexibility, and DNA curvature may consequently require a rigid narrow minor groove conformation that creates distinct A-tract-B-DNA junctions as the predominant cause of the bending.  相似文献   

19.
Using the AMBER software package (Weiner and Kollman 1981) substantially modified for electrostatic contributions, the structural energies of the double-stranded oligonucleotides dA12·dT12 and d(GCTCGAAAAA)4·d(TTTTTCGAGC)4 were minimized. Using various starting structures for the molecule dA12·dT12, one final structure is obtained which possesses the experimentally determined properties of poly(dA)·poly(dT). This structure is an A-form-B-form-hybrid structure similar to that of Arnott et al. (1983). The dA-strand is similar to an A-form while the dT-strand is similar to normal B-form. This structure and separately optimized B-form sequence stretches were used to construct the double-stranded fragment d(GCTCGAAAAA)4 which again was optimized. This sequence, when imbedded in a DNA fragment as contiguous repeats, shows a gel migration anomaly which has been interpreted as stable curvature of the DNA (Diekmann 1986). The calculated structure of this sequence indeed has a curved helix axis and is discussed as a model for curved DNA. A theoretical formalism is presented which allows one to calculate the structural parameters of any nucleic acid double helix in two different geometrical representations. This formalism is used to determine the parameters of the base-pair orientations of the curved structure in terms of wedge as well as cylindrical parameters. In the structural model presented here, the curvature of the helix axis results from an alternation of two different DNA structures in which the base-pairs possess different angles with the helix axis (cylinder tilt). Resulting from geometric restraints, a negative cylinder tilt angle correlates strongly with the closing of the minor groove (wedge roll). The blocks with different structure are not exactly coincident with the dA5-blocks and the B-DNA stretches. Within the dA5 block, base-pair tilt and wedge roll adopt large values which proceed into the 3 flanking B-DNA sequence by about one base-pair. These properties of the structure calculated here are discussed in terms of different models explaining DNA curvature.  相似文献   

20.
Integration Host Factor, IHF, is an E. coli DNA binding protein that imposes a substantial bend on DNA. Previous footprinting studies and bending assays have characterized several recognition sequences in the bacterial and lambda phage genome as unique in the way they are bound by IHF. We have chosen one of the lambda phage sites, H1, for study because it presents a small yet sequence-specific substrate for NMR analysis of the complex. A 19 base-pair duplex, H19, corresponding to the recognition sequence at the H1 site was constructed by isotopically labeling one of the strands with 15N. (1H, 15N) heteronuclear NMR experiments aided in assigning the imino proton resonances of the DNA alone and in complex with IHF. The NMR results are consistent with a mode of binding observed in the recent crystal structure of IHF bound to another of its sites from the lambda phage genome. Additionally, the dramatic change that IHF imposes on the imino proton chemical shifts is indicative of a severe deviation from canonical B-DNA structure. In order to understand the dynamic properties of the DNA in the complex with IHF, the exchange rates of the imino protons with the solvent have been measured for H19 with and without IHF bound. A drastic reduction in exchange is observed for the imino protons in the IHF bound DNA. In the DNA-protein complex, groups of adjacent base-pair exchange at the same rate, and appear to close more slowly than the rate of imino proton exchange with bulk water, since their exchange rate is independent of catalyst concentration. We infer that segments of the double helix as large as 6 bp open in a cooperative process, and remain open much longer than is typical for opening fluctuations in naked duplex DNA. We discuss these results in terms of the specific protein-DNA contacts observed in the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号