首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various DNA double-strand break repair mechanisms, in which DNA-dependent protein kinase (DNA-PK) has a major role, are involved both in the development and treatment of glioblastoma. The aim of the present study was to investigate how glioblastoma cells responded to hydrogen peroxide and staurosporine (STS) and how such a response is related to DNA-PK. Two human glioblastoma cell lines, M059J cells that lack DNA-PK activity, and M059K cells that express a normal level of DNA-PK, were exposed to hydrogen peroxide or STS. The response of the cells to hydrogen peroxide or STS was recorded by measuring cell death, which was detected by three different methods—MTT, annexin-V and propidium iodide staining, and JC-1 mitochondrial probe. The result showed that both hydrogen peroxide and STS were able to induce cell death of the glioblastoma cells and that the former was mainly associated with necrosis and the latter with apoptosis. Glioblastoma cells lacking DNA-PK were less sensitive to STS treatment than those containing DNA-PK. However, DNA-PK had no significant influence on hydrogen peroxide treatment. We further found that catalase, an antioxidant enzyme, could prevent cell death induced by hydrogen peroxide but not by STS, suggesting that the pathways leading to cell death by hydrogen peroxide and STS are different. We conclude that hydrogen peroxide and STS have differential effects on cell death of glioblastoma cells lacking DNA-dependent protein kinase. Such differential roles in the induction of glioblastoma cell death can be of significant value in selecting and/or optimizing the treatment for this malignant brain tumor.  相似文献   

2.
3.
1. Two enzymes were shown to be necessary for the production of ethylene from methional; they were separated from extracts of cauliflower florets by fractionation on Sephadex and other methods. 2. The first enzyme, generating hydrogen peroxide, appears to be similar to the fungal glucose oxidase, for like the latter it is highly specific for its substrate d-glucose. 3. The second enzyme, in the presence of cofactors and peroxide generated by the first enzyme, cleaves methional to ethylene. 4. It was also found that hydrogen peroxide in these reactions may be replaced by hydroperoxide generated from linolenic acid by lipoxidase enzymes. 5. Dihydroxyphenols were shown to have a marked inhibitory effect on these reactions and to account for the initial phase of low activity that is always observed in aqueous extracts prepared from the floret tissue.  相似文献   

4.
The discovery of superoxide dismutase (CuZnSOD) within the periplasms of several Gram-negative pathogens suggested that this enzyme evolved to protect cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. However, its presence in some non-pathogenic bacteria implies that there may be a role for this SOD during normal growth conditions. We found that sodC, the gene that encodes the periplasmic SOD of Escherichia coli, is repressed anaerobically by Fnr and is among the many antioxidant genes that are induced in stationary phase by RpoS. Surprisingly, the entry of wild-type E. coli into stationary phase is accompanied by a several-hour-long period of acute sensitivity to hydrogen peroxide. Induction of the RpoS regulon helps to diminish that sensitivity. While mutants of E. coli and Salmonella typhimurium that lacked CuZnSOD were not detectably sensitive to exogenous superoxide, both were killed more rapidly than their parent strains by exogenous hydrogen peroxide in early stationary phase. This sensitivity required prior growth in air. Evidently, periplasmic superoxide is generated during stationary phase by endogenous metabolism and, if it is not scavenged by CuZnSOD, it causes an unknown lesion that augments or accelerates the damage done by peroxide. The molecular details await elucidation.  相似文献   

5.
6.
The presence and variation of activity of the type 1 ribosome-inactivating protein saporin has been evaluated in cultured roots of the soapwort Saponaria officinalis . Results from western analysis and in vitro protein synthesis inhibition indicate that saporin production is increased in senescing cultures, reaching a maximum value during the late stationary phase. Accordingly, cultures treated with the senescence-related hormone abscisic acid show a significant increase in saporin activity, independently from the culture growth phase. Stress conditions, such as the presence of hydrogen peroxide in the culture medium, had no effect on the modulation of enzymatic activity. The putative regulation of saporin production by abscisic acid and its possible role in accomplishing the ageing programme is discussed.  相似文献   

7.
The relative importance of hydrogen peroxide generated as a consequence of irradiation with X-rays for the production of chromosomal aberrations has been studied in cultured CHO cells. Catalase introduced into cells by electroporation protected DNA from strand breakage induced by hydrogen peroxide given 4h later, and the yield of chromosome aberrations was also reduced. Nevertheless, when the cells were irradiated after treatment with catalase following a similar protocol and the yield of chromosomal aberrations analyzed at metaphase, no protective effect was observed as compared with cells treated with X-rays alone. These observations seem to support the hypothesis that hydroxyl radicals generated from hydrogen peroxide are not a major factor responsible for chromosome damage induced by ionizing radiation.  相似文献   

8.
The cadaverine content of soybean radicles showed a maximumpeak 3–4 days after planting. The variation coincidedwith radicle uricase activity during seed germination. The uricase activity could not be fractionate when the bufferpH for the extraction was at 6.0. The addition of 1 M KCl orNaCl to the buffer allowed the extraction of the uricase activity,but an addition of 1 M MgCl2 or BaCl2 inhibited this enzyme'sactivity. The urate-degrading enzyme system was purified 248-fold permilligram of protein from soybean radicles. The respective Kmvalues of the diamine oxidase activity for cadaverine and ofthe urate-degrading activity for hydrogen peroxide and uratewere 1.25, 2.93 and 50.3 µM. Analysis by gel electrophoresisof the partially purified enzyme fraction revealed that theurate-degrading enzyme system consisted of a peroxidase thatdegrades urate with hydrogen peroxide and a diamine oxidasethat releases hydrogen peroxide. These data are evidence that a urate-degrading diamine oxidaseand peroxidase system exists in soybean radicles and that thereaction rate of urate-degradation is controlled by the concentrationof cadaverine. (Received November 28, 1984; Accepted April 8, 1985)  相似文献   

9.
In Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD cells, but much more to SOD cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.  相似文献   

10.
During the log-phase growth of Proteus mirabilis the specific activity of catalase decreases, while at the beginning of or during the stationary phase an increase takes place which is abolished by inhibitors of nucleic acid or protein synthesis. Glucose in the culture medium has no appreciable effect on the level of enzyme synthesis nor does the passage of bacteria to anaerobiosis bring any noticeable change. Successive additions of hydrogen peroxide up to weak final concentrations (0.2--0.5 mM) stimulate catalase synthesis. Determination of the enzyme in vivo reveals but a weak proportion of the total catalase which can only be titrated after the breakdown of cells. The titrable enzyme in vivo represents, as an order of magnitude, the activity found associated with the cell wall, in an easily released form after the mechanical separation of the inner and outer membranes. Thus, bacteria can act upon exogenous peroxide only through a peripheral catalase while they possess in a masked form an important reserve of cytoplasmic enzyme.  相似文献   

11.
Yoda H  Hiroi Y  Sano H 《Plant physiology》2006,142(1):193-206
Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.  相似文献   

12.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H(2)O(2) oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

13.
Pironcheva G 《Cytobios》1998,95(380):167-171
Saccharomyces cerevisiae (ale strain) grown in batch culture to stationary phase was tested for its tolerance to heat (50 degrees C for 5 min), hydrogen peroxide (0.3 M) and salt (growth in 1.5 M sodium chloride/YPD medium). Yeast cells which have been exposed previously to heat shock are more tolerant to hydrogen peroxide and high salt concentrations (1.5 M NaCl) than the controls. Their fermentative activity as judged by glucose consumption and their viability, as judged by cell number and density have higher levels when compared with cells not previously exposed to heat shock. Experimental conditions facilitated the isolation of S. cerevisiae ale strain, which was tolerant to heat, and other agents such as hydrogen peroxide and sodium chloride.  相似文献   

14.
Superoxide dismutases (SODs) are metalloproteins that catalyse the dismutation of superoxide radicals to oxygen and hydrogen peroxide. The enzyme has been found in all aerobic organisms examined, where it plays a major role in the defence against toxic reduced oxygen species which are generated in many biological oxidations. Here we report the complete primary structure of a plant manganese superoxide dismutase (MnSOD), deduced from a cDNA clone of Nicotiana plumbaginifolia. The plant protein is highly homologous to MnSODs from other organisms and also contains an N-terminal leader sequence resembling a transit peptide for mitochondrial targeting. The location of the mature protein within the mitochondria has been demonstrated by subcellular fractionation experiments. We have analysed the expression profile of this MnSOD and found that it is dramatically induced during stress conditions, most notably in tissue culture as a result of sugar metabolism and also as part of the pathogenesis response of the plant, being induced by ethylene, salicylic acid, and Pseudomonas syringae infection. This induction is always accompanied by an increase in cytochrome oxidase activity, which suggests a specific protective role for MnSOD during conditions of increased mitochondrial respiration.  相似文献   

15.
Prolyl 4-hydroxylase (EC 1.14.11.2) is a key enzyme in collagen biosynthesis, its active form is a tetramer (alpha 2 beta 2). In L-929 fibroblasts in the log phase of culture there is a low level of active enzyme. When the cell culture reaches confluency, prolyl hydroxylase activity in cells increases by a process that requires de novo RNA and protein synthesis. The same result may be achieved by crowding the cells (replating log phase cells at the density of stationary phase cells). In the work reported here we further examined induction of the enzyme. RNA synthesis necessary for enzyme induction is complete 6 h after "crowding" while protein synthesis requires 12 h. Thymidine (0.2-0.5 mM) added to log phase cells will also cause enzyme induction to the level found in "crowded" or resting cells. We also looked at the decay of the enzyme activity after subculture. This occurs rapidly (enzyme half-life is 1-2 h) and is concurrent with the re-entry of resting cells into cell cycle; however, thymidine added at the time of subculture to block DNA synthesis does not prevent the loss of prolyl hydroxylase activity. These results suggest that when cells are not engaged in propagation, they begin to synthesize luxury proteins such as prolyl hydroxylase. However, the loss of prolyl hydroxylase during subculture is probably not a direct consequence of DNA synthesis.  相似文献   

16.
Recently, cardiotonic steroids (CTS) have been shown to lead to the activation of Na,K-ATPase at low concentrations in brain, promoting neuroprotection against ischemia. We report here the results of the use of digoxin and its semisynthetic derivatives BD-14, BD-15, and BD-16 against partial chemical ischemic induction followed by reperfusion in murine neuroblastoma cells neuro-2a (N2a). For chemical ischemic induction, sodium azide (5 mM) was used for 5 hours, and then reperfusion was induced for 24 hours. Na,K-ATPase activity and protein levels were analyzed in membrane preparation of N2a cells pretreated with the compounds (150 nM), in the controls and in induced chemical ischemia. In the Na,K-ATPase activity and protein levels assays, the steroids digoxin and BD-15 demonstrated a capacity to modulate the activity of the enzyme directly, increasing its levels of expression and activity. Oxidative parameters, such as superoxide dismutase (SOD) activity, lipid peroxidation (thiobarbituric acid reactive substance), glutathione peroxidase (GPx), glutathione (GSH) levels, hydrogen peroxide content, and the amount of free radicals (reactive oxygen species) during induced chemical ischemia were also evaluated. Regarding the redox state, lipid peroxidation, hydrogen peroxide content, and GPx activity, we have observed an increase in the chemical ischemic group, and a reduction in the groups treated with CTS. SOD activity increased in all treated groups when compared to control and GSH levels decreased when treated with sodium azide and did not change with CTS treatments. Regarding the lipid profile, we saw a decrease in the content of phospholipids and cholesterol in the chemical ischemic group, and an increase in the groups treated with CTS. In conclusion, the compounds used in this study demonstrate promising results, since they appear to promote neuroprotection in cells exposed to chemical ischemia.  相似文献   

17.
We examined the protective effect of cellular superoxide dismutase against extracellular hydrogen peroxide in cultured bovine aortic endothelial cells. 51Cr-labeled cells were exposed to hydrogen peroxide generated by glucose oxidase/glucose. Glucose oxidase caused a dose-dependent increase of 51Cr release. Pretreatment with diethyldithiocarbamate enhanced injury induced by glucose oxidase, corresponding with the degree of inhibition of endogenous superoxide dismutase activity. Inhibition of cellular superoxide dismutase by diethyldithiocarbamate was not associated either with alteration of other antioxidant defenses or with potentiation of nonoxidant injury. Enhanced glucose oxidase damage by diethyldithiocarbamate was prevented by chelating cellular iron. Inhibition of cellular xanthine oxidase neither prevented lysis by hydrogen peroxide nor diminished enhanced susceptibility by diethyldithiocarbamate. These results suggest that, in cultured endothelial cells: 1) cellular superoxide is involved in mediating hydrogen peroxide-induced damage; 2) superoxide, which would be generated upon exposure to excess hydrogen peroxide independently of cellular xanthine oxidase, promotes the Haber-Weiss reaction by initiating reduction of stored iron (Fe3+) to Fe2+; 3) cellular iron catalyzes the production of a more toxic species from these two oxygen metabolites; 4) cellular superoxide dismutase plays a critical role in preventing hydrogen peroxide damage by scavenging superoxide and consequently by inhibiting the generation of the toxic species.  相似文献   

18.
Escherichia coli has two catalases, HPI and HPII. HPI is induced during logarithmic growth in response to low concentrations of hydrogen peroxide. This induction is OxyR-dependent. On the other hand, HPII is not peroxide-inducible but is induced in entry to the stationary phase. We demonstrate here that E. coli displayed higher HPI catalase activity when compared to the cultures that were grown in a normal medium, if grown in a medium supplemented with iron-citrate. Iron supplementation had no effect on HPII catalase. This increase of HPI activity was OxyR-independent and not observed in a Deltafur mutant. The physiological significance of the increase of HPI activity is unclear, but it appears that the katG gene that codes for HPI catalase is among the genes that are regulated by Fur.  相似文献   

19.
Summary In methanol-utilizing yeasts, catalase is an essential enzyme for the destruction of hydrogen peroxide generated by methanol oxidase (E.C. 1.1.3.13). It was found however that a catalase-negative mutant of Hansenula polymorpha is able to consume methanol in the presence of glucose in continuous cultures. At a dilution rate of 0.1 h-1, stable continuous cultures could be obtained during growth on methanol/glucose mixtures with a molar ratio of methanol/glucose between 0 to 2.4. In these cultures methanol oxidase was induced up to a level of 40% of that obtained in the wild-type strain. The hydrogen peroxide-decomposition activity of the mutant was studied in more detail by pulsing methanol to samples of steady-state cultures. Only after the addition of excess methanol the hydrogen peroxide-decomposing system became saturated, and the cells excreted hydrogen peroxide. This was accompanied by excretion of formaldehyde and a rapid loss of viability. The presence of extracellular catalase during a methanol pulse prevented the loss of viability. The nature of the alternative hydrogen peroxide-decomposing enzyme system remains to be elucidated. Its capacity strongly depended on the cultivation conditions and pretreatment of the cells. Cells grown on formaldehyde/glucose mixtures showed a lower methanol tolerance than those grown on the methanol/glucose mixtures. Freeze-drying of cells drastically enhanced the excretion of hydrogen peroxide, probably as a result of an inactivation of the decomposing system.  相似文献   

20.
Although sexual reproduction is widespread, its adaptive advantage over asexual reproduction is unclear. One major advantage of sex may be its promotion of recombinational repair of DNA damage during meiosis. This idea predicts that treatment of the asexual form of a facultatively sexual-asexual eucaryote with a DNA-damaging agent may cause it to enter the sexual cycle more frequently. Endogenous hydrogen peroxide is a major natural source of DNA damage. Thus, we treated vegetative cells of Schizosaccharomyces pombe with hydrogen peroxide to test if sexual reproduction increases. Among untreated stationary-phase S. pombe populations the sexual spores produced by meiosis represented about 1% of the total cells. However, treatment of late-exponential-phase vegetative cells with hydrogen peroxide increased the percentage of meiotic spores in the stationary phase by 4- to 18-fold. Oxidative damage therefore induces sexual reproduction in a facultatively sexual organism, a result expected by the hypothesis that sex promotes DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号