首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable oxygen isotope (δ18O) compositions from vertebrate tooth enamel are widely used as biogeochemical proxies for paleoclimate. However, the utility of enamel oxygen isotope values for environmental reconstruction varies among species. Herein, we evaluate the use of stable oxygen isotope compositions from pronghorn (Antilocapra americana Gray, 1866) enamel for reconstructing paleoclimate seasonality, an elusive but important parameter for understanding past ecosystems. We serially sampled the lower third molars of recent adult pronghorn from Wyoming for δ18O in phosphate (δ18OPO4) and compared patterns to interpolated and measured yearly variation in environmental waters as well as from sagebrush leaves, lakes, and rivers (δ18Ow). As expected, the oxygen isotope compositions of phosphate from pronghorn enamel are enriched in 18O relative to environmental waters. For a more direct comparison, we converted δ18Ow values into expected δ18OPO4* values (δ18OWPO4*). Pronghorn δ18OPO4 values from tooth enamel record nearly the full amplitude of seasonal variation from Wyoming δ18OW‐PO4* values. Furthermore, pronghorn enamel δ18OPO4 values are more similar to modeled δ18OW‐PO4* values from plant leaf waters than meteoric waters, suggesting that they obtain much of their water from evaporated plant waters. Collectively, our findings establish that seasonality in source water is reliably reflected in pronghorn enamel, providing the basis for exploring changes in the amplitude of seasonality of ancient climates. As a preliminary test, we sampled historical pronghorn specimens (1720 ± 100 AD), which show a mean decrease (a shift to lower values) of 1–2‰ in δ18OPO4 compared to the modern specimens. They also exhibit an increase in the δ18O amplitude, representing an increase in seasonality. We suggest that the cooler mean annual and summer temperatures typical of the 18th century, as well as enhanced periods of drought, drove differences among the modern and historical pronghorn, further establishing pronghorn enamel as excellent sources of paleoclimate proxy data.  相似文献   

2.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

3.
To examine climate variability in northwest China in the late Cenozoic and to test hypotheses regarding the development of C4 ecosystems and the dynamics of the Asian monsoons, the carbon and oxygen isotopic compositions of 32 bulk and 368 serial tooth enamel samples from herbivores in the Linxia Basin (Gansu Province), ranging in age from 25 Ma to the present, were determined. The results corroborate and improve the record previously obtained from the area, showing that all mammals in the Linxia Basin lived in habitats consisting primarily of C3 vegetation prior to 2-3 Ma and that C4 grasses did not become a significant component of local ecosystems until the Quaternary. The data also show that shifts in climate to drier and/or warmer conditions after about 14, 9.5, 7, and 2.5 Ma, as indicated by positive δ18O excursions in the bulk enamel-δ18O record, were accompanied by increased seasonality; whereas negative δ18O shifts in the bulk data after about 11, 6, and 1.2 Ma, which indicate shifts to wetter and/or cooler climate, were associated with decreases in seasonality. Intra-tooth δ13C and δ18O profiles reveal significant changes in the seasonal patterns of diet and climate after ~ 2-3 Ma. Prior to ~ 2-3 Ma, there was little or no seasonal variation in herbivores' diets and all herbivores fed on C3 vegetation year around. After that time, the data show a significant seasonal variation in the diets of horses and bovids, ranging from a pure C3 to a mixed C3/C4 diet (with C4 plants accounting for up to ~ 60% of the diet). An inverse relationship (or negative correlation) between δ13C and δ18O values within individual teeth — a pattern characteristic of the summer monsoon regime — is observed in younger (< 2-3 Ma) horses and bovids but not in older fossils. These changes in intra-tooth isotopic patterns provide strong evidence for an enhanced monsoon climate since about 2-3 Ma.  相似文献   

4.
Oxygen isotope fractionation between human phosphate and water revisited   总被引:1,自引:0,他引:1  
The oxygen isotope composition of human phosphatic tissues (δ18OP) has great potential for reconstructing climate and population migration, but this technique has not been applied to early human evolution. To facilitate this application we analyzed δ18OP values of modern human teeth collected at 12 sites located at latitudes ranging from 4°N to 70°N together with the corresponding oxygen composition of tap waters (δ18OW) from these areas. In addition, the δ18O of some raw and boiled foods were determined and simple mass balance calculations were performed to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water + solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique δ18OW18OP linear relationship: δ18OW = 1.54(±0.09) × δ18OP−33.72(±1.51) (R2 = 0.87: p [H0:R2 = 0] = 2 × 10−19). The δ18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the δ18O of ingested water is +1.05 to 1.2‰ higher than that of drinking water in the area. In meat-dominated and cereal-free diets, which may have been the diets of some of our early ancestors, the shift is a little higher and the application of the regression equation would slightly overestimate δ18OW in these cases.  相似文献   

5.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

6.
Llama (Lama glama) and alpaca (Vicugna pacos) are the only large domesticated animals indigenous to the Americas. Pastoralism occupies a fundamental economic, social and religious role in Andean life. Today, camelid livestock are confined to the ecozone of the puna (above 3,500 masl), while their presence on the Pacific coast during pre-Hispanic times is attested by archaeological skeletal remains. This study aims to document herding practices on the northern Peruvian coast during the Early Intermediate Period (200 BC-600 AD) by gaining insights into diet, location of breeding and mobility of archaeological camelids from the funerary and ritual contexts of two Mochica sites, Uhle Platform in Huacas de Moche and El Brujo. The three first early years and the long-term life histories of the animals were documented by the combined bulk analysis of bone collagen (δ13Ccol and δ15Ncol) and bone structural carbonate (δ13Cbone and δ18Obone) and the serial analysis of structural carbonate of molar tooth enamel (δ13Cenamel and δ18Oenamel). Mochica camelids were bred in the low and/or middle valleys, unlike their modern counterparts, who are restricted to highland puna C3 pastures. Archaeological camelids had diverse and complex life histories, usually with substantial maize foddering. An ontogenetic switch in diet and possible residential mobility during the course of life were identified for some specimens. Although the inference of geographic origin from δ18Obone and δ18Oenamel values was limited because of the lack of understanding of the influence of environmental and biological factors, tooth enamel analysis has great potential for exploring camelid herding practices and Andean pastoralism. Our study suggested that Mochica herders adapted their practices to the difficult lowland environment and that herding practices were varied and not restricted to breeding at higher altitudes. The role of maize in different aspects of the economic life of the Mochicas is also underlined.  相似文献   

7.
The carbon and oxygen isotopic compositions of 149 samples of benthic foraminifera from deep-sea core tops indicate that none of the nine species studied secrete calcium carbonate in isotopic equilibrium with ambient bottom water. Uvigerina, Pyrgo murrhina, and Oridorsalis tener are the closest to 18O equilibrium (with average deviations about −0.4‰), while Planulina wuellerstorfi and P. murrhina are the closest to 13C equilibrium (with average deviations about −1‰). P. wuellerstorfi shows the most systematic relationship between δ 13C and bottom water apparent oxygen utilization. The intraspecific variabilities in δ 18O and δ 13C suggest that estimates of bottom water paleotemperatures can be made to a precision of ± 0.7°C, while estimates of past apparent oxygen utilization (AOU) can be made to ± 35 μmol/kg. Based on intraspecific comparisons of the Recent samples with fossils, no temporal changes in the degree of either 18O or 13C disequilibrium have been detected for Planulina wuellerstorfi, Uvigerina, Oridorsalis tener and Globocassidulina subglobosa.  相似文献   

8.
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.  相似文献   

9.
Carbon and oxygen isotopic data are reported from 116 Pleistocene Equus teeth from sixty-six localities in the New World ranging from 68°N (Alaska, Canada) to 35°S (Argentina). Equus species have been predominantly grazers, and as such, carbon isotopic values of their tooth enamel provide evidence of the Pleistocene distribution of C3 and C4 grasses. The carbon data presented here indicate a gradient (δ13C range of 10 parts/mil) in the relative proportion of C3 and C4 grasses between high latitude and equatorial Equus samples. The largest amount of change from C3 to C4 grasses during the Pleistocene occurred in the mid-latitudes between about 30 to 40°. The oxygen data, which vary proportionately with temperature, indicate a latitudinal gradient (δ18O range of 20 parts/mil) between high-latitude and equatorial Equus samples. The basic pattern of latitudinal gradients of C3/C4 grass distribution and temperature as interpreted from these Pleistocene data is similar to the modern-day. The use of stable isotopes of fossil herbivore teeth represents a new means to interpret Pleistocene climates and terrestrial ecology.  相似文献   

10.
Isotopic studies of multi-taxa terrestrial vertebrate assemblages allow determination of paleoclimatic and paleoecological aspects on account of the different information supplied by each taxon. The late Campanian-early Maastrichtian “Lo Hueco” Fossil-Lagerstätte (central eastern Spain), located at a subtropical paleolatitude of ~31°N, constitutes an ideal setting to carry out this task due to its abundant and diverse vertebrate assemblage. Local δ18OPO4 values estimated from δ18OPO4 values of theropods, sauropods, crocodyliforms, and turtles are close to δ18OH2O values observed at modern subtropical latitudes. Theropod δ18OH2O values are lower than those shown by crocodyliforms and turtles, indicating that terrestrial endothermic taxa record δ18OH2O values throughout the year, whereas semiaquatic ectothermic taxa δ18OH2O values represent local meteoric waters over a shorter time period when conditions are favorable for bioapatite synthesis (warm season). Temperatures calculated by combining theropod, crocodyliform, and turtle δ18OH2O values and gar δ18OPO4 have enabled us to estimate seasonal variability as the difference between mean annual temperature (MAT, yielded by theropods) and temperature of the warmest months (TWMs, provided by crocodyliforms and turtles). ΔTWMs-MAT value does not point to a significantly different seasonal thermal variability when compared to modern coastal subtropical meteorological stations and Late Cretaceous rudists from eastern Tethys. Bioapatite and bulk organic matter δ13C values point to a C3 environment in the “Lo Hueco” area. The estimated fractionation between sauropod enamel and diet is ~15‰. While waiting for paleoecological information yielded by the ongoing morphological study of the “Lo Hueco” crocodyliforms, δ13C and δ18OCO3 results point to incorporation of food items with brackish influence, but preferential ingestion of freshwater. “Lo Hueco” turtles showed the lowest δ13C and δ18OCO3 values of the vertebrate assemblage, likely indicating a diet based on a mixture of aquatic and terrestrial C3 vegetation and/or invertebrates and ingestion of freshwater.  相似文献   

11.
The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state.Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P , with a = 9.022(2), b = 9.040(2), c = 8.409(2) Å, α = 103.51(2), β = 103.42(3), γ = 103.37(2)°, V = 642.9(3) Å3, Z = 1, Dx = 1.699 g cm−3, μ(Mo Kα) = 17.208 cm−1, F(000) = 336 and T= 295 K. A total of 2251 data were collected over the range 1θ25°; of these, 1993 (independent and with I3σ(I)) were used in the structural analysis. The final R and Rw residuals were 0.034 and 0.038 respectively. The structure contains squarato-O1, O3-bridged bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] units forming zigzag one-dimensional chains. Each copper atom is in a square-pyramidal environment with the two nitrogen atoms of 2,2′-bipyridyl and the two oxygen atoms of the hydroxo groups building the basal plane and another oxygen atom of the squarate lying in the apical position.The magnetic properties are discussed in the light of spectral and structural data and compared with the reported ones for other bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] complexes.  相似文献   

12.
Carbon isotope ratios (13C/12C) were measured for the leaves of the seagrass Thalassia testudinum Banks ex König and carbonates of shells collected at the seagrass beds from seven sites along the coast of southern Florida, U.S.A. The δ13C values of seagrass leaves ranged from −7.3 to −16.3‰ among different study sites, with a significantly lower mean value for seagrass leaves from those sites near mangrove forests (−12.8 ± 1.1‰) than those far from mangrove forests (−8.3 ± 0.9‰; P < 0.05). Furthermore, seagrass leaves from a shallow water area had significantly lower δ13C values than those found in a deep water area (P < 0.01). There was no significant variation in δ13C values between young and mature leaves (P = 0.59) or between the tip and base of a leaf blade (P = 0.46). Carbonates of shells also showed a significantly lower mean δ13C value in the mangrove areas (−2.3 ± 0.6‰) than in the non-mangrove areas (0.6 ± 0.3‰; P <0.025). In addition, the δ13C values of seagrass leaves were significantly correlated with those of shell carbonates (δ13C seagrass leaf = −9.1 + 1.3δ13C shell carbonate (R2 = 0.83, P < 0.01)). These results indicated that the input of carbon dioxide from the mineralization of mangrove detritus caused the variation in carbon isotope ratios of seagrass leaves among different sites in this study.  相似文献   

13.
Abundance, isotopic composition and morphological imprints of the planktonic foraminifera Globorotalia scitula (Brady) were closely examined for possible use as a novel reconstruction tool of chemical environments in sub-intermediate depth seawater in the past. Based on the MOCNES plankton tow observation of dwelling depths of G. scitula and the isotopic compositions together with hydrochemistry data, the empirical relations between isotopic disequilibria in carbon (Δδ13C=δ13CG. scitulaδ13CDIC) and oxygen (Δδ18O=δ18OG. scitulaδ18Ow) isotopes in the carbonate tests and the seawater δ18O and δ13C of dissolved inorganic carbon (DIC), respectively, are introduced. The morphological information such as pore density and porosity is also examined for significant relations to carbonate chemistry. Shell porosity is strongly correlated saturation state of calcite. The dissolution of living G. scitula tests may promote the observed isotopic differences as well as the increases in porosity. Δδ18O of G. scitula is found effectively to be linear function of both water temperature and calcite saturation state (Ω), and thereby temperature equation for G. scitula is provided, while Δδ13C of G. scitula is a linear function of only calcite saturation state.The equation was validated by using Globorotalia scitula collected by a sediment trap in intermediate water depths. Satisfactory agreements were found between observed and calculated Δδ18O from the empirical equations based on temperature and hydrochemistry data at sediment trap deployment site, indicating that the equation may be useful in paleo-environmental reconstruction of sub-intermediate water. The sediment trap observation further suggests that the abundance of G. scitula does not necessarily correspond to surface water productivity and to POC flux, but instead, it correlates well with the supply of fine organic matter, which appears to be a result of water convection. Thus, G. scitula may be an unambiguous and excellent paleo-environmental recorder for carbonate chemistry and for fine organic matter transport to the depths, if isotopic and morphological observations are combined.  相似文献   

14.

Background

The oxygen (δ18O) and carbon (δ13C) isotope compositions of bioapatite from skeletal remains of fossil mammals are well-established proxies for the reconstruction of palaeoenvironmental and palaeoclimatic conditions. Stable isotope studies of modern analogues are an important prerequisite for such reconstructions from fossil mammal remains. While numerous studies have investigated modern large- and medium-sized mammals, comparable studies are rare for small mammals. Due to their high abundance in terrestrial ecosystems, short life spans and small habitat size, small mammals are good recorders of local environments.

Methodology/Findings

The δ18O and δ13C values of teeth and bones of seven sympatric modern rodent species collected from owl pellets at a single locality were measured, and the inter-specific, intra-specific and intra-individual variations were evaluated. Minimum sample sizes to obtain reproducible population δ18O means within one standard deviation were determined. These parameters are comparable to existing data from large mammals. Additionally, the fractionation between coexisting carbonate (δ18OCO3) and phosphate (δ18OPO4) in rodent bioapatite was determined, and δ18O values were compared to existing calibration equations between the δ18O of rodent bioapatite and local surface water (δ18OLW). Specific calibration equations between δ18OPO4 and δ18OLW may be applicable on a taxonomic level higher than the species. However, a significant bias can occur when bone-based equations are applied to tooth-data and vice versa, which is due to differences in skeletal tissue formation times. δ13C values reflect the rodents’ diet and agree well with field observations of their nutritional behaviour.

Conclusions/Significance

Rodents have a high potential for the reconstruction of palaeoenvironmental conditions by means of bioapatite δ18O and δ13C analysis. No significant disadvantages compared to larger mammals were observed. However, for refined palaeoenvironmental reconstructions a better understanding of stable isotope signatures in modern analogous communities and potential biases due to seasonality effects, population dynamics and tissue formation rates is necessary.  相似文献   

15.
Stable isotope analyses of fossil teeth and other authigenic minerals have been used to reconstruct the paleoenvironment and paleoelevation of the Tibetan Plateau. The accuracy of such reconstructions is limited by the lack of a comprehensive modern comparative database from the region. We analyzed the carbon and oxygen isotopic compositions (δ13C and δ18O values) of tooth enamel from modern herbivores, the δ13C values of grasses and the δ18O values of water samples collected from various elevations within the Tibetan Plateau to examine their relationships with modern environment/elevation. The δ13C values of enamel samples from horses, yaks and goats display a narrow range of variation, with a mean of − 10.7 ± 1.4‰ (n = 301), indicating that these modern herbivores were feeding predominantly on C3 plants, consistent with the current dominance of C3 vegetation in the region. Some of the samples have δ13C values between − 7.3 and − 10‰. Although these higher δ13C values could suggest consumption of some C4 plants by the animals, the lack of significant seasonal δ13C variations within individual teeth indicates that these higher enamel δ13C values are due to consumption of C3 plants experiencing water stress and/or some CAM plants rather than C4 plants. Our data show that the conservative “cut-off” δ13C value for a pure C3 diet within the Tibetan Plateau should be − 8‰ for modern herbivores and − 7‰ (or even − 6.5‰) for fossils if the region was as arid in the past as today. In contrast to the small intra-tooth δ13C variations within individual teeth, serial enamel samples display large intra-tooth δ18O variations, reflecting seasonal variations in the δ18O of meteoric water. The mean δ18O values of tooth enamel from yaks and horses show a strong correlation with water δ18O values, confirming that the δ18O of tooth enamel from obligate drinker generally tracks the δ18O of meteoric water. Unfortunately, elevation alone cannot explain most of the variance in the δ18O of precipitation and tooth enamel, suggesting that quantitative reconstruction of the paleoelevation of the Tibetan Plateau using re-constructed δ18O values of paleo-meteoric water from fossil enamel or other oxygen-bearing minerals is not warranted. For a given environment, horses have the lowest enamel–δ18O values while goats display the highest enamel–δ18O values among the species studied. The large inter-species δ18O variations are likely due to differences in physiology and diet/drinking behavior of the animals. This underscores the importance of species-specific studies when interpreting δ18O data of fossil mammalian teeth in a stratigraphic sequence as a record of paleoclimate changes.  相似文献   

16.
The structures of bis(1H+,5H+-S-methylisothiocarbonohydrazidium) di-μ-chlorooctachlorodibismuthate(III) tetrahydrate: (C2H10N4S)2(Bi2Cl10)· 4H2O (compound [I]) and of tris(1H+-S-methylisothiocarbonohydrazidium) esachlorobismuthate(III): (C2H9N4S)3(BiCl5.67I0.33) (compound [II]) were determined from single crystal X-ray diffractometer data. Both compounds crystallize as triclinic (P ); crystals [I] with Z = 1 formula unit in a cell of constants: A = 10.621(3), B = 9.989(5), C = 7.439(3) Å, α = 88.31(2), β = 84.51(2), γ = 68.88(2)°, final R = 0.0427 for 2229 unique reflections with I 2σ(I); crystals [II] with Z = 2 and cell dimensions: A = 14.109(4), B = 12.209(9), C = 8.206(7) Å, α = 103.54(3), β = 104.95(2), γ = 81.96(2)°, final R = 0.0411 for 3637 unique reflections (1 2σ(I)). The structure of [I] is built up of diprotonated organic cations, water molecules and dinuclear centrosymmetric [Bi2Cl10]4− anions held together by N-HCl, N-HO, O-HCl hydrogen bonds and Van der Waals interactions. The [Bi2Cl10]4− complex consists of two edge-sharing octahedra in which three pairs of bonds of similar length are observed (Bi-Clav = 2.602(5), 2.712(4), 2.855(5) Å). The structure of [II] consists of monoprotonated cations and [BiCl5.67I0.33]3− anions held together by a tridimensional network of hydrogen bonds. Each bismuth atom is octahedrally surrounded by six chlorine atoms, one of which is statistically substituted by a iodine atom.  相似文献   

17.
The rate constant for the hydrolysis of prostacyclin (PGI2) to 6-keto-PGF was measured by monitoring the UV spectral change, over a pH range 6 to 10 at 25°C and the total ionic strength of 0.5 M. The first-order rate constant (kobs) extrapolated to zero buffer concentration follows an expression, kobs = kH+ (H+), where kH+ is a second-order rate constant for the specific acid catalyzed hydrolysis. The value of kH+ obtained (3.71 × 104 sec−1 M−1) is estimated approximately 700-fold greater than a kH+ value expected from the hydrolysis of other vinyl ethers. Such an unusually high reactivity of PGI2 even for a vinyl ether is attributed to a possible ring strain release that would occur upon the rate controlling protonation of C5. A Brønsted slope (α) of 0.71 was obtained for the acid (including H3O+) catalytic constants, from which a pH independent first-order rate constant for the spontaneous hydrolysis (catalyzed by H2O as a general acid) was estimated to be 1.3 × 10−6 sec−1. An apparent activation energy (Ea) of 11.85 Kcal/mole was obtained for the hydrolysis at pH 7.48, from which a half-life of PGI2 at 4°C was estimated to be approximately 14.5 min. when the total phosphate concentration is 0.165 M (cf. 3.5 min. at 25°C).  相似文献   

18.
We measured nitrous oxide (N2O), dinitrogen (N2), methane (CH4), and carbon dioxide (CO2) fluxes in horizontal and vertical flow constructed wetlands (CW) and in a riparian alder stand in southern Estonia using the closed chamber method in the period from October 2001 to November 2003. The replicates’ average values of N2O, N2, CH4 and CO2 fluxes from the riparian gray alder stand varied from −0.4 to 58 μg N2O-N m−2 h−1, 0.02–17.4 mg N2-N m−2 h−1, 0.1–265 μg CH4-C m−2 h−1 and 55–61 mg CO2-C m−2 h−1, respectively. In horizontal subsurface flow (HSSF) beds of CWs, the average N2 emission varied from 0.17 to 130 and from 0.33 to 119 mg N2-N m−2 h−1 in the vertical subsurface flow (VSSF) beds. The average N2O-N emission from the microsites above the inflow pipes of the HSSF CWs was 6.4–31 μg N2O-N m−2 h−1, whereas the outflow microsites emitted 2.4–8 μg N2O-N m−2 h−1. In VSSF beds, the same value was 35.6–44.7 μg N2O-N m−2 h−1. The average CH4 emission from the inflow and outflow microsites in the HSSF CWs differed significantly, ranging from 640 to 9715 and from 30 to 770 μg CH4-C m−2 h−1, respectively. The average CO2 emission was somewhat higher in VSSF beds (140–291 mg CO2-C m−2 h−1) and at the inflow microsites of HSSF beds (61–140 mg CO2-C m−2 h−1). The global warming potential (GWP) from N2O and CH4 was comparatively high in both types of CWs (4.8 ± 9.8 and 6.8 ± 16.2 t CO2 eq ha−1 a−1 in the HSSF CW 6.5 ± 13.0 and 5.3 ± 24.7 t CO2 eq ha−1 a−1 in the hybrid CW, respectively). The GWP of the riparian alder forest from both N2O and CH4 was relatively low (0.4 ± 1.0 and 0.1 ± 0.30 t CO2 eq ha−1 a−1, respectively), whereas the CO2-C flux was remarkable (3.5 ± 3.7 t ha−1 a−1). The global influence of CWs is not significant. Even if all global domestic wastewater were treated by wetlands, their share of the trace gas emission budget would be less than 1%.  相似文献   

19.
Accumulating isotopic evidence from fossil hominin tooth enamel has provided unexpected insights into early hominin dietary ecology. Among the South African australopiths, these data demonstrate significant contributions to the diet of carbon originally fixed by C4 photosynthesis, consisting of C4 tropical/savannah grasses and certain sedges, and/or animals eating C4 foods. Moreover, high-resolution analysis of tooth enamel reveals strong intra-tooth variability in many cases, suggesting seasonal-scale dietary shifts. This pattern is quite unlike that seen in any great apes, even ‘savannah’ chimpanzees. The overall proportions of C4 input persisted for well over a million years, even while environments shifted from relatively closed (ca 3 Ma) to open conditions after ca 1.8 Ma. Data from East Africa suggest a more extreme scenario, where results for Paranthropus boisei indicate a diet dominated (approx. 80%) by C4 plants, in spite of indications from their powerful ‘nutcracker’ morphology for diets of hard objects. We argue that such evidence for engagement with C4 food resources may mark a fundamental transition in the evolution of hominin lineages, and that the pattern had antecedents prior to the emergence of Australopithecus africanus. Since new isotopic evidence from Aramis suggests that it was not present in Ardipithecus ramidus at 4.4 Ma, we suggest that the origins lie in the period between 3 and 4 Myr ago.  相似文献   

20.
We have quantified the environmental and physiological parameters responsible for stable isotopic disequilibrium in the non-symbiotic planktic foraminifera, Globigerina bulloides, via controlled experiments with living specimens. Individual test chambers secreted in the laboratory were amputated, pooled with other chambers from defined positions in the shell whorl and analyzed for their carbon and oxygen isotopic composition. When temperature, δ18Owater and δ13C of ΣCO2 are kept constant, the chamber δ13C and δ18O values increase 2.6 and 0.8%. respectively between the smallest chambers (chs. 1–9, shell size ≈180 μm) and final chamber (ch. 14, shell size ≈500 μm). Feeding experiments with prey of different δ13C values show that 8–15% of the chamber δ13C signal is due to the incorporation of metabolic CO2. The observed ontogenetic trend is responsible for the stable isotope size-dependency in this species and may be due to a fractionation mechanism involving the incorporation of metabolic CO2 during calcification. Temperature experiments show that shell δ18O varies as predicted by paleotemperature equations, but is offset from equilibrium. We present correction factors that should be applied to δ13C and δ18O data from well constrained size ranges to yield either oxygen isotope equilibrium or ambient δ13C of seawater ΣCO2. Our results suggest that for paleoceanographic applications, shells in the 270–320 μm size range are optimal for paleoenvironmental reconstructions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号