首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.  相似文献   

2.
Sonication is a simple method for reducing the size of liposomes. We report the size distributions of liposomes as a function of sonication time using three different techniques. Liposomes, mildly sonicated for just 30 sec, had bimodal distributions when surface-weighted with modes at about 140 and 750 nm. With extended sonication, the size distribution remains bimodal but the average diameter of each population decreases and the smaller population becomes more numerous. Independent measurements of liposome size using Dynamic Light Scattering (DLS), transmission electron microscopy (TEM), and the nystatin/ergosterol fusion assay all gave consistent results. The bimodal distribution (even when number-weighted) differs from the Weibull distribution commonly observed for liposomes sonicated at high powers over long periods of time and suggests that a different mechanism may be involved in mild sonication. The observations are consistent with the following mechanism for decreasing liposome size. During ultrasonic irradiation, cavitation, caused by oscillating microbubbles, produces shear fields. Large liposomes that enter these fields form long tube-like appendages that can pinch-off into smaller liposomes. This proposed mechanism is consistent with colloidal theory and the observed behavior of liposomes in shear fields.  相似文献   

3.
Abstract

Incorporation of the lipopolysaccharide (LPS) and polysaccharide (PS) from Aeromonas salmonicida into liposomes of varying lipid composition and lamellarity as a function of the LPS and PS concentration was investigated. Positively-charged multilamellar vesicles (MLV) composed of phosphatidylcholine (PC): cholesterol (CH): stearylamine (SA) (6:3:1, mole: mole: mole) incorporated the LPS more readily than negatively-charged liposomes composed of PC: CH: phosphatidylglycerol (PG) in the same molar ratios. Regardless of surface charge, more LPS was incorporated into MLV than into vesicles prepared by relatively mild sonication (SV) or large unilamellar vesicles prepared via extrusion through 200 nm pore size filters (LUVET200). In contrast, SV and LUVET200 incorporated more PS than did MLV. The total amount of liposomally-incorporated LPS or PS among the three vesicle types was proportional to the concentration of antigen in the hydrating solutions.  相似文献   

4.
Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.  相似文献   

5.
The formation of liposomes with low polydispersity index by application of ultrasounds was investigated considering methodology specifications such as sonication time and sonication power. Phosphatidylcholine (PC) liposomes were formed by the evaporation–hydration method. The vesicles were sonicated using several sonication conditions. The liposomes were then characterized by dynamic light scattering (DLS) and freeze-fracture electron microscopy (FFEM). Correlation functions from DLS were treated by cumulants method and GENDIST to obtain the mean radius and polydispersity index. These calculations allowed to fix an optimal sonication time (3000 s) and a useful interval of ultrasound power between 39 and 91 W. DLS and FFEM results confirmed that vesicle size, lamellarity and the polydispersity index decreased with the increase of sonication power. Thus, we propose a systematic method to form liposomes in which the physical characteristics of the vesicles may be controlled as a function of sonication time and power.  相似文献   

6.
In apurinic acid, a single-stranded polydeoxyribonucleotide easily obtained upon depurination of DNA, the proton resonances arising from thymine and cytosine are readily observable in aqueous solution of 25°C. Two methyl thymine resonances, centered at 1.88 ppm and separated by 0.045 ppm, are observed. We attribute the downfield methyl resonance to thymines with no pyrimidine nearest neighbors and the upfield methyl resonance to thymines having pyrimidine neighbors in the 3′ and/or 5′ positions. Upon ultraviolet irradiation, the upfield methyl and thymine H-6 resonances decrease in amplitude and two methyl resoances appear at 1.63 and 1.52 ppm, corresponding, respectively, to cytosine-thymine and thymine-thymine cyclobutane dimers. Photoreversal eliminates these two minor methyl resonances from the pmr spectrum. We conclude that apurinic acid provides a suitable model system for pmr studies of chemically modified pyrimidine bases in DNA.  相似文献   

7.
The effect of cholesterol in the liposome bilayer on the stability of incorporated retinol was studied. Retinol was incorporated into liposomes containing soybean phosphatidylcholine (PC) and cholesterol (CH) at various ratios, and the liposomes were prepared as multilamellar vesicles by the dehydration–rehydration method. Retinol readily incorporated into liposomes at a ratio of 0.01:1 (w/w) retinol:lipid, with over 94.52% being incorporated in all conditions studied. The incorporation efficiency of retinol increased slightly with increasing CH content in the liposome and with increasing pH of the hydration buffer. Average particle size increased as the CH content increased, and mean particle sizes at pH 5, 7, and 9 were 30.27, 89.53, and 41.42 µm, respectively. The time course of retinol degradation in aqueous solution in liposomes with various ratios of PC to CH was determined under a variety of pH conditions (pH 5, 7, and 9), and temperatures (4, 25, 37, and 50°C). The stability of incorporated retinol was enhanced by increasing the CH content. At pH 7.0 and 4°C, for example, 90.17% of the retinol in liposomes containing 50:50 (PC:CH) remained after 10 days of storage, whereas 51.46% remained at 100:0 (PC:CH). These results indicate that CH in liposomes greatly increases the incorporation efficiency of retinol and the stability of incorporated retinol.  相似文献   

8.
The effect of cholesterol in the liposome bilayer on the stability of incorporated retinol was studied. Retinol was incorporated into liposomes containing soybean phosphatidylcholine (PC) and cholesterol (CH) at various ratios, and the liposomes were prepared as multilamellar vesicles by the dehydration-rehydration method. Retinol readily incorporated into liposomes at a ratio of 0.01:1 (w/w) retinol:lipid, with over 94.52% being incorporated in all conditions studied. The incorporation efficiency of retinol increased slightly with increasing CH content in the liposome and with increasing pH of the hydration buffer. Average particle size increased as the CH content increased, and mean particle sizes at pH 5, 7, and 9 were 30.27, 89.53, and 41.42 microm, respectively. The time course of retinol degradation in aqueous solution in liposomes with various ratios of PC to CH was determined under a variety of pH conditions (pH 5, 7, and 9), and temperatures (4, 25, 37, and 50 degrees C). The stability of incorporated retinol was enhanced by increasing the CH content. At pH 7.0 and 4 degrees C, for example, 90.17% of the retinol in liposomes containing 50:50 (PC:CH) remained after 10 days of storage, whereas 51.46% remained at 100:0 (PC:CH). These results indicate that CH in liposomes greatly increases the incorporation efficiency of retinol and the stability of incorporated retinol.  相似文献   

9.
Satoshi Hoshina 《BBA》1981,638(2):334-340
Temperature-dependent spectral changes of chlorophyll a (Chl a) incorporated into liposomes of two types of phosphatidylcholine are studied. When Chl a incorporated into the liposomes is cooled down to 5°C from the temperature of the gel-to-liquid crystalline phase transition of the lipid, the red shift as well as the increase in half-bandwidth of the red peak of Chl a are only slight. By measuring the difference spectra produced by substracting the absorption spectrum at the phase transition temperature of the lipid from that at lower temperature, it is shown that the component absorbing at longer wavelength (675–685 nm) than the peak of the red maximum (about 670 nm) significantly increases at the expense of the component absorbing at shorter wavelength (657–668 nm). The positions of positive and negative peaks depend on the temperature and the molar ratio of the lipid to Chl a. The absorbance change is most pronounced on cooling below the phase transition temperature of the lipid. The temperature-induced absorbance change is almost completely reversible. The results indicate that the aggregated forms of Chl a in liposomes can be spectrophotometrically detected in the gel phase of the lipid.  相似文献   

10.
Electron spin resonance (ESR) and atomic force microscopy (AFM) were used to study liposomes that were prepared from soybean phosphatidylcholine (PC); they incorporated plant antioxidants (ginger, allspice, and black-pepper extracts; clove oil; etc.) that were encapsulated in biopolymers (sodium caseinate or sodium caseinate–maltodextrin covalent conjugates). Plant antioxidants were shown to cause a 15–25% decrease in the microviscosity of deep-lying regions of the liposome lipid bilayer by ESR with a 16-doxylstearic acid spin probe. A ginger extract exerted the greatest effect (24%). Sodium caseinate and its covalent conjugates with maltodextrins (dextrose equivalents (DEs) 2 and 10) increased the microviscosity by 30–35% as compared with free and antioxidant-incorporating liposomes. AFM showed that antioxidants increased the cross-sectional area and volume of liposomes and that the polymers made liposomes denser and their structure more compact.  相似文献   

11.
J A Hamilton 《Biochemistry》1989,28(6):2514-2520
Interactions of carbonyl 13C-enriched triacylglycerols (TG) with phospholipid bilayers [egg phosphatidylcholine (PC), dipalmitoylphosphatidylcholine (DPPC), and an ether-linked phosphatidylcholine] were studied by 13C NMR spectroscopy. Up to 3 mol % triolein (TO) or tripalmitin (TP) was incorporated into DPPC vesicles by cosonication of the TG and DPPC at approximately 50 degrees C. NMR studies were carried out in a temperature range (30-50 degrees C) in which pure TO is a liquid whereas pure TP is a solid. In spectra of DPPC vesicles with TG at 40-50 degrees C, both TO and TP had narrow carbonyl resonances, indicative of rapid motions, and chemical shifts indicative of H bonding of the TG carbonyls with solvent (H2O) at the aqueous interfaces of the vesicle bilayer. Below the phase transition temperature of the DPPC/TG vesicles (approximately 36 degrees C), most phospholipid peaks broadened markedly. In DPPC vesicles with TP, the TP carbonyl peaks broadened beyond detection below the transition, whereas in vesicles with TO, the TO carbonyl peaks showed little change in line width or chemical shift and no change in the integrated intensity. Thus, in the gel phase, TP solidified with DPPC, whereas TO was fluid and remained oriented at the aqueous interfaces. Egg PC vesicles incorporated up to 2 mol % TP at 35 degrees C; the TP carbonyl peaks had line-width and chemical shift values similar to those for TP (or TO) in liquid-crystalline DPPC. TO incorporated into ether-linked PC had properties very similar to TO in ester-linked PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
R Katakai  K Wanikawa  K Saga 《Biopolymers》1990,30(7-8):815-819
Liposomes consisting of egg yolk phosphatidylcholine and hydrophobic peptides Nps- and Cl-.+H2-(Met-Met-Leu)n-OEt (n = 6-10) with various polypeptide chain lengths were prepared by the sonication method. The conformation of the peptides incorporated into the liposomes was examined by CD spectroscopy. All the peptides incorporated assumed alpha-helical conformation. Quantitative analyses of the peptides and lipids in the membranes showed that the concentration of the peptides with a positive charge at the N-terminus in the liposomes decreased markedly as the peptide chain length increased, reaching zero for the peptides over n = 8. The peptides without a positive charge were hardly incorporated into the liposomes. Infrared attenuated reflection spectroscopy of multilayered membranes containing the peptides suggests that the axis of the alpha-helical peptide rods is oriented in parallel with the molecular axis of lipids in the membranes. These results suggest that the hydrophobic peptides can be incorporated into the lipid bilayers of the liposomes in the alpha-helical conformation, the rods of which have a length comparable to the thickness of the lipid bilayers, and the N-terminal positive charge of the peptides is essential for the stable peptide incorporated into the membranes.  相似文献   

13.
The phosphatidylcholine (PC) component of liposomes was structurally modified by replacing its C-1, or both C-1 and C-2, ester linkage(s) with an ether and/or carbamyl bond(s) or by changing its steric configuration. Small unilamellar liposomes were formed from PC, traces of the corresponding 14C-labeled PC and cholesterol in the presence of 6-carboxyfluorescein (02.M) by sonication, and purified by centrifugation. These liposomes were administered intravenously to rats, and their stability in blood as well as the rate of their clearance from the circulation were determined. Stability and survival times of liposomes were markedly increased by modifying both the C-1 and the C-2 ester linkages in PC. A similar but quantitatively smaller effect was observed when only the C-1 ester linkage was modified. However, the stability remained unaffected by changing the steric configuration of PC, but this modification influenced the clearance rate of liposomes from the circulation. These results demonstrate that both stability in blood and the clearance rate from circulation can be modulated by structurally modifying the ester linkages in the phospholipid component of liposomes.  相似文献   

14.
Li JX  Li ZQ  Pang YZ  Tang CS 《Life sciences》2003,73(8):969-980
The present study is undertaken to investigate whether the phospholipase A(2) (PLA(2)) influences mRNA nucleocytoplasmic transport evaluated by nucleoside triphosphatase (NTPase) activity and mRNA export in isolated hepatic nuclear envelope. Isolated hepatic nuclei from rat liver were exposed to PLA(2) (10(-5) approximately 10(-2)/ml) with or without incorporation of nuclei with phosphatidylcholine (PC) liposome. Messenger RNA exports and NTPase activities of nuclear membrane were assayed using ATP and GTP as substrates. We found that the RNA efflux, evaluated by [3H] uridine, was potently decreased in a concentration-dependent manner, by incubation of hepatic nuclei with PLA(2), regardless using ATP or GTP as substrates. The PC content in nuclear membrane was also decreased by PLA(2)-treatment. The PC was incorporated into the nuclear membrane by addition of phospholipid liposomes into the incubation mixture. PC incorporation into the nuclear membrane did not alter mRNA export. However this resulted in a significant increase in mRNA export rate in PLA(2)-treated group. Messenger RNA export rate in PLA(2) (10(-3) unit/mL)- treated nuclear membrane was positively correlated with level of PC incorporation, both using ATP and GTP as substrates. The activity of nucleoside triphosphatase, a nuclear membrane-associated enzyme, showed parallel variations with mRNA transport. It is concluded that nuclear PLA(2) plays a regulatory role in RNA transport, which can be antagonized by exogenous PC. These might be pathophysiologically significance, although the mechanisms by which this effect takes place remain to be clarified.  相似文献   

15.
Proton magnetic resonance spectra of ubiquinone-10 and ubiquinone-10 dispersed with dipalmitoylglycerophosphocholine or egg phosphatidylcholine in aqueous medium have been obtained. The dispersions are in the form of multilamellar liposomes as judged by 31P-NMR spectra and the thermal history of the samples have ensured that ubiquinone not incorporated into the phospholipid structure only gives rise to a broad-line NMR proton spectrum. A high-resolution proton spectrum of ubiquinone is observed with upfield shifts of the O-methyl protons of the benzoquinone rings, indicating close proximity of the molecules but with an arrangement different from the pure liquid ubiquinone. Spectra obtained in the presence of the lanthanide shift reagents, dysprosium fluorooctanedionate and Dy(NO3)3, which have a preferred location in the hydrophobic and hydrophilic domains, respectively, of ubiquinone/phospholipid codispersions, are consistent with the partitioning of ubiquinone into a hydrophobic phospholipid environment remote from the aqueous phase. The type of arrangements of ubiquinone that could be accommodated within bilayers of phospholipid are discussed.  相似文献   

16.
N Oku  S Shibamoto  F Ito  H Gondo  M Nango 《Biochemistry》1987,26(25):8145-8150
For the purpose of cytoplasmic delivery of aqueous content in liposomes through endosomes, we synthesized a pH-sensitive polymer, cetylacetyl(imidazol-4-ylmethyl)polyethylenimine (CAIPEI), which generates polycations at acidic pH. CAIPEI in its aqueous phase caused aggregation of sonicated vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) (molar ratio 1:4) when the pH of the solution was lowered. The polymer also induced membrane intermixing as measured by resonance energy transfer between vesicles containing N-(7-nitro-2,1,3-benz[d]oxadiazol-4-yl)phosphatidylethanolamine and those containing N-Rhodamine phosphatidylethanolamine at pH 4-5, while the addition of CAIPEI caused neither aggregation of PC vesicles nor the intermixing of liposomal membranes between PC and PC/PS vesicles at any pH. The CAIPEI-induced membrane intermixing was dependent on the polymer/vesicle ratio rather than on the polymer concentration. Then the polymer was incorporated into the bilayers of PC vesicles. These CAIPEI vesicles also caused membrane intermixing with liposomes containing PS under acidic conditions. The reconstituted CAIPEI did not reduce the trapping efficiency of vesicles or increase their permeability to glucose even at low pH. The vesicles caused the low pH induced aggregation and membrane intermixing with other negatively charged liposomes containing phosphatidic acid or phosphatidylglycerol. These results suggest that the protonation of the polymer at acidic pH endows the CAIPEI vesicles with the activity to fuse with negatively charged liposomes.  相似文献   

17.
The fluorine magnetic resonance spectra of 4-fluorobenzoyl and 3,5-di(trifluoromethyl)benzoyl-alpha-chymotrypsins and the corresponding methyl esters were determined. An unusually large downfield displacement of the chemical shift (-10 ppm) was observed for the 4-fluorobenzoyl-alpha-chymotrypsin compared to the free acid in water. The shift of the ethyl ester was displaced upfield on going from a partly aqueous solvent to dioxane or methanol. The line broadening of the fluorine resonance of the 3,5-di(trifluoromethyl)benzoyl-alpha-chymotrypsin was minimal and there was no evidence of two peaks in the spectrum. The resonance was displaced only slightly downfield from the corresponding acid in water. Unusual chemical shifts for fluorinated acylchymotrypsins have been reported for other acyl groups and they appear to be unrelated to the anomalous deacylation rates observed for some fluorine substituted acylenzymes.  相似文献   

18.
We have recorded (13)C nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala, [1-(13)C]Val-labeled pharaonis phoborhodopsin (ppR or sensory rhodopsin II) incorporated into egg PC (phosphatidylcholine) bilayer, by means of site-directed high-resolution solid-state NMR techniques. Seven (13)C NMR signals from transmembrane alpha-helices were resolved for [3-(13)C]Ala-ppR at almost the same positions as those of bacteriorhodopsin (bR), except for the suppressed peaks in the loop regions in spite of the presence of at least three Ala residues. In contrast, (13)C NMR signals from the loops were visible from [1-(13)C]Val-ppR but their peak positions of the transmembrane alpha-helices are not always the same between ppR and bR. The motional frequency of the loop regions in ppR was estimated as 10(5) Hz in view of the suppressed peaks from [3-(13)C]Ala-ppR due to interference with proton decoupling frequency. We found that conformation and dynamics of ppR were appreciably altered by complex formation with a cognate truncated transducer pHtr II (1-159). In particular, the C-terminal alpha-helix protruding from the membrane surface is involved in the complex formation and subsequent fluctuation frequency is reduced by one order of magnitude.  相似文献   

19.
Solid-state 13C NMR spectra of the M photocycle intermediate of bacteriorhodopsin (bR) have been obtained from purple membrane regenerated with retinal specifically 13C labeled at positions 5, 12, 13, 14, and 15. The M intermediate was trapped at -40 degrees C and pH = 9.5-10.0 in either 100 mM NaCl [M (NaCl)] or 500 mM guanidine hydrochloride [M (Gdn-HCl)]. The 13C-12 chemical shift at 125.8 ppm in M (NaCl) and 128.1 ppm in M (Gdn-HCl) indicates that the C13 = C14 double bond has a cis configuration, while the 13C-13 chemical shift at 146.7 ppm in M (NaCl) and 145.7 ppm in M (Gdn-HCl) demonstrates that the Schiff base is unprotonated. The principal values of the chemical shift tensor of the 13C-5 resonance in both M (NaCl) and M (Gdn-HCl) are consistent with a 6-s-trans structure and a negative protein charge localized near C-5 as was observed in dark-adapted bR. The approximately 5 ppm upfield shift of the 13C-5 M resonance (approximately 140 ppm) relative to 13C-5 bR568 and bR548 (approximately 145 ppm) is attributed to an unprotonated Schiff base in the M chromophore. Of particular interest in this study were the results obtained from 13C-14 M. In M (NaCl), a dramatic upfield shift was observed for the 13C-14 resonance (115.2 ppm) relative to unprotonated Schiff base model compounds (approximately 128 ppm). In contrast, in M (Gdn-HCl) the 13C-14 resonance was observed at 125.7 ppm. The different 13C-14 chemical shifts in these two M preparations may be explained by different C = N configurations of the retinal-lysine Schiff base linkage, namely, syn in NaCl and anti in guanidine hydrochloride.  相似文献   

20.
The effects of the acyl chain composition of phosphatidylcholines (PCs) on the stability of small unilamellar vesicles during freeze-drying and rehydration in the presence of maltose were studied by monitoring the retention of a trapped marker, calcein, in the internal liposome compartment. In dipalmitoyl PC, beta-oleoyl-gamma-palmitoyl-PC and egg yolk PC liposomes, good or fair retentions (>50%) were observed in the presence of maltose, but maltose was ineffective in preserving retention in the dioleoyl PC (DOPC) liposomes (<10%). The extremely low retention in the DOPC liposome was ascribed to neither a formation of the inverted hexagonal phase of the liposomal membrane nor the fusion/aggregation of the liposomes in the drying-rehydration process. Differential scanning calorimetry measurements suggested that interactions of maltose with PC headgroups were essential to stabilizing the dry liposomes. These interactions were significant in the saturated or mixed chain liposomes but were markedly reduced in the DOPC liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号