首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • The dormancy of seeds of upland cotton can be broken during dry after‐ripening, but the mechanism of its dormancy release remains unclear.
  • Freshly harvested cotton seeds were subjected to after‐ripening for 180 days. Cotton seeds from different days of after‐ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2O2 and phytohormones and activities of antioxidant enzymes and glucose‐6‐phosphate dehydrogenase were measured during after‐ripening and germination.
  • Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2O2 increased during after‐ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2O2 and changed peroxidase content during germination.
  • For cotton seed, the alleviation of coat‐imposed dormancy required 30 days of after‐ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
  相似文献   

2.
3.
4.
5.
Phleum sardoum is an endemic psammophilous species of Sardinia, growing exclusively on coastal sandy dunes. The effect of glumes on seed germination, germination requirements at constant (5–25°C) and alternating (25/10°C) temperatures, both in the light (12/12 h) and in the dark were evaluated, as well as the effect of a dry after‐ripening period (90 days at 25°C), the salt stress effect (0–600 mmol NaCl) and its recovery on seed germination. The presence of glumes reduced final germination percentages. For fresh naked seeds, high germination percentages were observed at 10°C. Dry after‐ripening increased germination rate at low temperatures, but did not affect final germination percentages. NaCl determined a secondary salt‐induced dormancy which recovery interrupted only partially. Our results highlighted that this species has its optimum of germination during autumn–winter when, under a Mediterranean climate, water availability is highest and soil salinity levels are minimal.  相似文献   

6.
Frey  Anne  Audran  Corinne  Marin  Elena  Sotta  Bruno  Marion-Poll  Annie 《Plant molecular biology》1999,39(6):1267-1274
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.  相似文献   

7.
植物种子休眠的原因及休眠的多形性   总被引:73,自引:3,他引:70  
概述了植物种子休眠的原因及种子休眠的多形性。种壳障碍、胚形态发育不全和生理后熟以及种子中含有化学抑制剂都可导致种子休眠。根据不同的分类标准可将种子休眠可分成不同类型,但通常将休眠分为外源休眠、内源休眠和综合休眠。影响休眠的因素是复杂的,植物种类不同,休眠特性不同;同种植物的种子,来源于不同居群和植株,在不同时期采集,位于母株不同位置,其休眠有可能不同;甚至同一果实中的不同种子,休眠特性都会有差异。影响休眠性状表达的基因既有核基因,又有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠的多形性有利于调节种子萌发的时空分布。  相似文献   

8.
Abstract This paper describes an assessment of the effect of exposure to fire‐related cues (heat shock, smoke and nitrate) and the interactions between the cues on seed dormancy release of tropical savanna legumes in north‐eastern Australia. Ten legume species were tested, comprising both native and exotic species. The ten species responded variously to the treatments. Brief exposure to temperatures between 80 and 100°C was found to break the seed dormancy of the native ephemeral herbs Chamaecrista mimosoides, Crotalaria calycina, Crotalaria montana, Indigofera hirsuta and Tephrosia juncea, as well as the exotic ephemeral herb Crotalaria lanceolata. Exposure to 80°C combined with treatment with a nitrate solution produced an additive effect on the germination of Chamaecrista mimosoides and Crotalaria lanceolata. However, the four species with the heaviest seeds, two exotic ephemeral herbs (Chamaecrista absus and Crotalaria pallida) and two native perennials (Galactia tenuiflora and Glycine tomentella) displayed no significant increase in germination with exposure to fire‐related cues. Exposure to 120°C for 5 min produced seed mortality in all species tested. Two of the largest seeded species, Crotalaria pallida and Galactia tenuiflora, displayed the lowest tolerance to heat shock, with seed mortality after exposure to 100°C for 5 min. These data indicate that fire can promote the germination of some tropical savanna legumes. As a proportion of seeds of each species displayed no innate dormancy, some germination may occur in the absence of fire, especially of exotic species.  相似文献   

9.
  • Seed germination responsiveness to environmental cues is crucial for plant species living in changeable habitats and can vary among populations within the same species as a result of adaptation or modulation to local climates. Here, we investigate the germination response to environmental cues of Sisymbrella dentata (L.) O.E. Schulz, an annual endemic to Sicily living in Mediterranean Temporary Ponds (MTP), a vulnerable ecosystem.
  • Germination of the only two known populations, Gurrida and Pantano, was assessed over a broad range of conditions to understand the role of temperatures, nitrate, hormones (abscisic acid – ABA and gibberellins – GA) and after‐ripening in dormancy release in this species.
  • Seed germination responsiveness varied between the two populations, with seeds from Gurrida germinating under a narrower range of conditions. Overall, this process in S. dentata consisted of testa and endosperm rupture as two sequential events, influenced by ABA and GA biosynthesis. Nitrate addition caused an earlier testa rupture, after‐ripening broadened the thermal conditions that allow germination, and alternating temperatures significantly promoted germination of non‐after‐ripened seeds.
  • Primary dormancy in S. dentata seeds likely allows this plant to form a persistent seed bank that is responsive to specific environmental cues characteristic of MTP habitats.
  相似文献   

10.
The effects of after‐ripening (storage under warm, dry conditions) on seed germination was examined in six plant species from the arid zone of Western Australia with the aim of improving germination and germination rate for rehabilitation objectives. Study species (Acanthocarpus preissii, Anthocercis littorea, Dioscorea hastifolia, Eremophila oldfieldii, Thryptomene baeckeacea and Zygophyllum fruticulosum) were selected based on diverse plant habits, seed types and requirements for rehabilitation. After‐ripening was investigated by adjusting seed moisture content to 13 and 50 equilibrium relative humidity (eRH) at 23 °C and storing seeds at two temperatures (30 and 45 °C) from 1 to 18 months. Following storage, seeds were incubated in water, gibberellic acid (GA3) or karrikinolide (KAR1; the butenolide, 3‐methyl‐2H‐furo[2,3‐c]pyran‐2‐one). All after‐ripening conditions increased germination percentage and rate of A. littorea and D. hastifolia, with A. littorea only germinating when treated with GA3 or KAR1. The germination of Z. fruticulosum was dependent on after‐ripening temperature and seed moisture content. After‐ripening had a limited effect on the remaining three species. The restoration implications of the findings are discussed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 411–421.  相似文献   

11.
Rice leaves accumulate serotonin in response to infection by Bipolaris oryzae. The leaves of the sl mutant, which is deficient in the gene encoding tryptamine 5‐hydroxylase, accumulate tryptamine instead of serotonin upon infection by B. oryzae. Because tryptamine is a possible precursor of indole‐3‐acetic acid (IAA), we investigated the accumulation of IAA in sl leaves infected with B. oryzae. Liquid chromatography coupled with tandem mass spectrometry analysis indicated that IAA accumulated at approximately 1.5 μmol/gFW in the leaves of sl mutant. This accumulation was suppressed by 95% by the treatment with the tryptamine decarboxylase inhibitor, (S)‐α‐(fluoromethyl)tryptophan, at 100 μm , indicating that tryptamine served as the precursor of IAA. The accumulation of IAA was not reproduced by treatment with CuCl2 or by exogenous feeding of tryptamine. Furthermore, inoculation of Magnaporthe grisea induced only a lower level of IAA accumulation. On the other hand, B. oryzae produced IAA in culture media containing tryptamine. These findings strongly suggested that the metabolism of tryptamine by B. oryzae was responsible for IAA accumulation in the leaves of the sl mutant. Serotonin added to the culture media was also converted into 5‐hydroxyindole‐3‐acetic acid (5HIAA) at a rate similar to that of tryptamine. Considering that wild‐type rice leaves accumulate serotonin for defensive purposes, reducing the concentration of serotonin by conversion into 5HIAA may be significant as a detoxification process in the interaction between B. oryzae and rice.  相似文献   

12.
Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy. Reporter gene analysis was carried out to determine the spatiotemporal pattern of NCED5 and NCED9 gene expression. GUS activity from the NCED5 promoter was detected in both the embryo and endosperm of developing seeds with maximal staining after mid-development. NCED9 expression was found at early stages in the testa outer integument layer 1, and after mid-development in epidermal cells of the embryo, but not in the endosperm. In accordance with its temporal- and tissue-specific expression, the phenotypic analysis of nced5 nced6 nced9 triple mutant showed the involvement of the NCED5 gene, together with NCED6 and NCED9, in the induction of seed dormancy. In contrast to nced6 and nced9, however, nced5 mutation did not affect the gibberellin required for germination. In vegetative tissues, combining nced5 and nced3 mutations reduced vegetative growth, increased water loss upon dehydration, and decreased ABA levels under both normal and stressed conditions, as compared with nced3. NCED5 thus contributes, together with NCED3, to ABA production affecting plant growth and water stress tolerance.  相似文献   

13.
14.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

15.
The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during domestication and human‐made selection. Groundnut varieties lacking FSD experience precocious seed germination during harvest imposing severe losses. Development of easy‐to‐use genetic markers enables early‐generation selection in different molecular breeding approaches. In this context, one recombinant inbred lines (RIL) population (ICGV 00350 × ICGV 97045) segregating for FSD was used for deploying QTL‐seq approach for identification of key genomic regions and candidate genes. Whole‐genome sequencing (WGS) data (87.93 Gbp) were generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and nondormant). After analysis of resequenced data from the pooled samples with dormant parent (reference genome), we calculated delta‐SNP index and identified a total of 10,759 genomewide high‐confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate genes—RING‐H2 finger protein and zeaxanthin epoxidase—were identified in these two regions, which significantly express during seed development and control abscisic acid (ABA) accumulation. QTL‐seq study presented here laid out development of a marker, GMFSD1, which was validated on a diverse panel and could be used in molecular breeding to improve dormancy in groundnut.  相似文献   

16.
Genomic regions affecting seed shattering and seed dormancy in rice   总被引:43,自引:0,他引:43  
Non-shattering of the seeds and reduced seed dormancy were selected consciously and unconsciously during the domestication of rice, as in other cereals. Both traits are quantitative and their genetic bases are not fully elucidated, though several genes with relatively large effects have been identified. In the present study, we attempted to detect genomic regions associated with shattering and dormancy using 125 recombinant inbred lines obtained from a cross between cultivated and wild rice strains. A total of 147 markers were mapped on 12 rice chromosomes, and QTL analysis was performed by simple interval mapping and composite interval mapping. For seed shattering, two methods revealed the same four QTLs. On the other hand, for seed dormancy a number of QTLs were estimated by the two methods. Based on the results obtained with the intact and de-hulled seeds, QTLs affecting hull-imposed dormancy and kernel dormancy, respectively, were estimated. Some QTLs detected by simple interval mapping were not significant by composite interval mapping, which reduces the effects of residual variation due to the genetic background. Several chromosomal regions where shattering QTLs and dormancy QTLs are linked with each other were found. This redundancy of QTL associations was explained by ”multifactorial linkages” followed by natural selection favoring these two co-adapted traits. Received: 23 November 1998 / Accepted: 27 August 1999  相似文献   

17.
脱落酸和赤霉素调控种子休眠与萌发研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
刘晏  李俊德  李家儒 《生物资源》2020,42(2):157-163
种子的休眠与萌发是高等植物生长发育进程中非常重要的环节,是维系物种繁衍的重要过程。而激素在这一过程中扮演着非常重要的角色。而在这个过程中脱落酸(abscisic acid,ABA)和赤霉素(gibberellin GA)发挥着尤其重要的作用。本文综述了当前对复杂分子网络的理解,这些分子网络涉及脱落酸和赤霉素在调节种子休眠和萌发中的关键作用,其中含AP2结构域的转录因子起着关键作用。  相似文献   

18.
Seeds of dormant Douglas-fir seeds germinated poorly when they were cultivated at 20–23 °C while isolated embryos germinated fully within two weeks. Seed dormancy was therefore imposed on the embryo by its surrounding structures. This physiological behaviour was well correlated with changes in ABA level during culture. Indeed, the ABA level decreased in isolated embryos while it increased in both embryo and megagametophyte during culture of whole seeds. The origin of this increase was analysed and the different ways by which seed coats could interfere with ABA accumulation are discussed.  相似文献   

19.
Study of the factors involved in the dormancy of Fagus sylvatica seeds shows that such dormancy is due partly to the seed coats and partly to endogenous factors. Seed coat removal accelerates both the release from dormancy and the effects of the other treatments that abolish it. The dormancy of these seeds is eliminated by cold treatment at 4°C over a period longer than 8 weeks, and exogenous application of abscisic acid (ABA) reverses the effects of low temperature, the seeds remaining in an ungerminated state. Additionally, ABA reduces protein synthesis but slightly increases RNA synthesis, which suggests its involvement in the synthesis of RNAs related to this process. In vitro translation of the RNAs isolated from these seeds shows that ABA delays the disappearance of at least 2 polypeptides (of ca 22 and 24 kDa), which are abundant in dormant seeds and under conditions that prevent the release from dormancy, but which disappear under treatments that abolish it. Exogenous application of gibberellic acid (GA3) proved to be efficient in breaking the dormancy of these seeds and in substituting for cold treatment as well as in antagonizing the effects of ABA on the synthesis of both DNA and proteins. GA3 also accelerates the disappearance of the two polypeptides abundant in dormant seeds and in ABA-treated seeds. These findings suggest that both ABA and GA3 could be involved in the regulation of nucleic acid and protein metabolism during dormancy, acting antagonistically in these processes and, specifically, in the regulation of the synthesis of the two proteins that appear to play a role in the maintenance of dormancy in these seeds.  相似文献   

20.
Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole‐3‐pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole‐3‐acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin‐related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号