首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
The development of yellow-seeded cultivars in Brassica rapa (B. rapa) would improve the quality and quantity of available oil. The identification and mapping of the seed coat color gene may aid in the development of yellow-seeded cultivars and facilitate introgression of the yellow-seeded gene into desirable Brassica napus (B. napus) lines through marker-assisted selection. In the current study, we investigated the inheritance of a yellow-seeded landrace in B. rapa, “Dahuang”, originating from the Qinghai-Tibetan plateau. Genetic analysis revealed that the phenotype of the yellow-seeded trait in Dahuang is controlled by one recessive gene, termed Brsc1. Mapping of the Brsc1 gene was subsequently conducted in a BC1 population comprised 456 individuals, derived from (Dahuang × 09A-126) × Dahuang. From a survey of 256 amplified fragment length polymorphism (AFLP) primer combinations, 10 tightly linked AFLP markers were obtained. The closest AFLP markers flanking Brsc1, Y10 and Y06, were 0.2 and 0.4 cM away, respectively. Subsequently, using simple sequence repeat (SSR) markers in the reference map, the Brsc1 gene was mapped on A09 in B. rapa. Blast analysis revealed that seven AFLP markers showed sequence homology to A09 of B. rapa, wherein six AFLP markers in our map were in the same order as those in A09 of B. rapa. The two closest markers, Y10 and Y06, delimited the Brsc1 gene within a 2.8 Mb interval. Furthermore, Y05 and Y06, the two closest AFLP markers on one side linked to Brsc1, were located in scaffold000059 on A09 of B. rapa, whereas the closet AFLP marker on the opposite side of Brsc1, Y10, was located in scaffold000081 on A09 of B. rapa. Molecular markers developed from these studies may facilitate marker-assisted selection (MAS) of yellow-seeded lines in B. rapa and B. napus and expedite the process of map-based cloning of Brsc1.  相似文献   

3.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

4.
Brassica napus (AnAnCnCn) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (ArAr) and 74 accessions of Brassica carinata (BcBcCcCc) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high‐throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.  相似文献   

5.
Cross-compatible relatives of crop species contribute to the uncertainty regarding the potential risk of transgene escape from genetically modified varieties. The most successful crossing partner of oilseed rape (Brassica napus L.) is diploid Brassica rapa L. Variation of ploidy level among B. rapa cultivars has, until recently, been neglected in the context of gene flow and hybridisation with oilseed rape. We estimated the extent of hybridisation between autotetraploid B. rapa varieties (female) and B. napus (pollen donor) under experimental field conditions. Morphology, variation of relative DNA amount, and microsatellite markers were used to distinguish between intraspecific offspring of tetraploid B. rapa and interspecific hybrids with B. napus. Of 517 seed progenies of tetraploid B. rapa, 45 juvenile plants showed species specific morphological traits of oilseed rape. The detection of putative hybrids based on variation in relative DNA amounts was problematic due to the occurrence of aneuploidy. In total, 84 offspring showed relative DNA amounts deviating from tetraploid B. rapa, four of which were hexaploids. Of the 205 offspring analysed at three microsatellite loci, 67 had oilseed rape alleles. Based on molecular evidence a minimum hybridisation rate of 13.0% was estimated. A few mother plants accounted for the majority of hybrids. The mean pollen viability of hybrids between B. napus and tetraploid B. rapa (80.6%) was high in comparison with mean pollen viability of triploid hybrids between B. napus and diploid B. rapa. Therefore, the occurrence of tetraploid B. rapa should be taken into consideration when estimating the likelihood of gene flow from oilseed rape to close relatives at the landscape level. Tetraploid B. rapa is a common component of several seed mixtures and establishes feral populations in northwest Germany. Assuming a similar abundance of diploid and tetraploid B. rapa, gene flow from B. napus to tetraploid may be more likely than gene flow to diploid B. rapa.  相似文献   

6.
Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa × B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds.  相似文献   

7.
 There is strong evidence indicating that gene flow from transgenic B. napus into weedy wild relatives is inevitable following commercial release. Research should now focus on the transmission, stability, and impact of transgene expression after the initial hybridization event. The present study investigated the transfer of a phosphinothricin-tolerance transgene by inter-specific hybridization between B. rapa and two transgenic B. napus lines. The expression of the transgene was monitored in the F1 hybrids and in subsequent backcross generations. The transgene was transmitted relatively easily into the F1 hybrids and retained activity. Large differences in the transmission frequency of the transgene were noted between offspring of the two transgenic lines during backcrossing. The most plausible explanation of these results is that the line showing least transmission during backcrossing contains a transgene integrated into a C-genome chromosome. Approximately 10% of offspring retained the tolerant trait in the BC3 and BC4 generations. The implications of these findings for the stable introgression of transgenes carried on one of the chromosomes of the C-genome from B. napus and into B. rapa are briefly discussed. Received: 5 November 1996 / Accepted: 21 February 1997  相似文献   

8.
A major goal of evolutionary biology is to determine the mechanisms generating biodiversity. In Begonia, one of the largest plant genera (1900+ species), it has been postulated that the high number of endemic species is a by‐product of low gene flow among populations, which predisposes the group to speciation. However, this model of divergence requires that reproductive barriers accumulate rapidly among diverging species that overlap in their geographic ranges, otherwise speciation will be opposed by homogenizing gene flow in zones of secondary contact. Here, we test the outcomes of secondary contact in Begonia by genotyping multiple sympatric sites with 12 nuclear and seven plastid loci. We show that three sites of secondary contact between B. heracleifolia and B. nelumbiifolia are highly structured, mostly containing parental genotypes, with few F1 hybrids. A sympatric site between B. heracleifolia and B. sericoneura contains a higher proportion of F1s, but little evidence of introgression. The lack of later‐generation hybrids contrasts with that documented in many other plant taxa, where introgression is extensive. Our results, in conjunction with previous genetic work, show that Begonia demonstrate properties making them exceptionally prone to speciation, at multiple stages along the divergence continuum. Not only are populations weakly connected by gene flow, promoting allopatric speciation, but species often show strong reproductive barriers in secondary contact. Whether similar mechanisms contribute to diversification in other large genera remains to be tested.  相似文献   

9.
Intertribal somatic hybrids between Brassica napus (2n = 38, AACC) and a dye and medicinal plant Isatis indigotica (2n = 14, II) were obtained by fusions of mesophyll protoplasts. From a total of 237 calli, only one symmetric hybrid (S2) and five asymmetric hybrids (As1, As4, As6, As7 and As12) were established in the field. These hybrids showed some morphological variations and had very low pollen fertility. Hybrids S2 and As1 possessed 2n = 52 (AACCII), the sum of the parental chromosomes, and As12 had 2n = 66 (possibly AACCIIII). Hybrids As4, As6 and As7 were mixoploids (2n = 48–62). Genomic in situ hybridization analysis revealed that pollen mother cells at diakinesis of As1 contained 26 bivalents comprising 19 from B. napus and 7 from I. indigotica and mainly showed the segregation 26:26 at anaphase I (AI) with 7 I. indigotica chromosomes in each polar group. Four BC1 plants from As1 after pollinated by B. napus resembled mainly B. napus in morphology but also exhibited some characteristics from I. indigotica. These plants produced some seeds on selfing or pollination by B. napus. They had 2n = 45 (AACCI) and underwent pairing among the I. indigotica chromosomes and/or between the chromosomes of two parents at diakinesis. All hybrids mainly had the AFLP banding patterns from the addition of two parents plus some alterations. B. napus contributed chloroplast genomes in majority of the hybrids but some also had from I. indigotica. Production of B. napusI. indigotica additions would be of considerable importance for genome analysis and breeding.  相似文献   

10.
Introgression of genes from allotetraploid Brassica napus into its diploid wild relative B. rapa is generally considered to be inevitable. As a means to minimize a potential ecological risk in environments where B. rapa is growing, the insertion of transgenes into chromosome regions of B. napus with a very low probability of transfer to backcross generations with B. rapa has been proposed. Recently, the progeny of four backcross generations between transgenic herbicide-tolerant B. napus and B. rapa was studied in selection experiments (Metz et al. 1997). The rapid decrease in the frequency of herbicide-tolerant plants was explained by selection against the C-chromosomes of B. napus in favor of the homeologous A-chromosomes. Obviously, such C-chromosomes could be potential candidates as safe integration sites for transgenes. We considered these safety aspects using a simple population genetic model. Theory and experiments, however, do not favor the chromosomes of B. napus as safe candidates with respect to the introgression of transgenes into wild populations of B. rapa. Received: 5 July 1999 / Accepted: 29 July 1999  相似文献   

11.
Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an allopolyploid, resulting from natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), both being diploid species derived from a common ancestor. To study the relationships between genomes of these Brassica species, we have determined simultaneously the pairing and recombination pattern of A and C chromosomes during meiosis of AAC triploid hybrids, which result from the interspecific cross between natural B. napus and B. rapa. Different AAC triploid hybrids and their progenies have been analysed using cytogenetic, BAC-FISH, and molecular techniques. In 71% of the pollen mother cells, homologous A chromosomes paired regularly, and usually one chromosome of each pair was transmitted to the progeny. C chromosomes remained mainly univalent, but were involved in homoeologous pairing in 21.5% of the cells, and 13% of the transmitted C chromosomes were either recombined or broken. The rate of transmission of C chromosomes depended on the identity of the particular chromosome and on the way the hybrid was crossed, as the male or as the female parent, to B. napus or to B. rapa. Gene transfers in triploid hybrids are favoured between A genomes of B. rapa and B. napus, but also occur between A and C genomes though at lower rates.  相似文献   

12.
Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double‐low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double‐low and double‐high), accompanied by an increase in genetic load in the double‐low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra‐ and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.  相似文献   

13.
Characterizing insect pollen carriage between closely related plant species is especially challenging where source species possess morphologically identical pollen and share many pollinators in common. Here, we use an SNP-based assay using the plant DNA barcoding locus matK to characterize pollen carriage between cultivated Brassica napus and wild Brassica rapa in three sites across southern England. The assay differentiated B. napus and B. rapa pollen carried by honey bees (Apis melifera), bumblebees (Bombus spp.), mining bees (Andrena spp.) and hoverflies (Syrphidae) captured on B. napus plants 1–2 m from wild B. rapa, and on B. rapa plants at various distances from the crop . Apis individuals foraging on B. rapa and carrying B. napus pollen were rarely found beyond 10 m from the crop. However, Bombus and Andrena individuals captured on B. rapa occasionally carried crop pollen up to 300 m from the source field. Hoverflies carried less pollen overall but featured high proportions of B. napus pollen even at the most distant capture points. We predict that different pollinator species will evoke markedly different patterns of interspecific hybrid formation. We conclude that more exhaustive surveys of this kind will help parameterize future mechanistic models to predict the distribution of hybrids between Genetically Modified B. napus and B. rapa on a landscape scale.  相似文献   

14.
Determining the long‐term consequences of hybridization remains a central quest for evolutionary biologists. A particular challenge is to establish whether and to what extent widespread hybridization results in gene flow (introgression) between parental taxa. In this issue of Molecular Ecology, Jordan et al. ( 2018 ) search for evidence of gene flow between two closely related species of Geum (Rosaceae), which hybridize readily in contemporary populations and where hybrid swarms have been recorded for at least 200 years (Ruhsam, Hollingsworth, & Ennos, 2013 ). The authors find mixed evidence of ancient introgression when analysing allopatric populations. Intriguingly, when analysing populations of a region where the two species occur either mixed in the same population or in close proximity, and where hybrids are presently common, Jordan and colleagues find that the majority of randomly sampled individuals analysed (92/96) show no evidence of introgression (defined as individuals with admixture coefficients of <1%). The few individuals identified as hybrids are shown to likely be F1 or early‐generation backcrosses, indicating that even in sympatric regions, hybridization does not penetrate beyond a few generations. Based on their findings, Geum seems to be an example of little to no introgression despite contemporary hybridization.  相似文献   

15.
Polyploidy plays a crucial role in plant evolution. Brassica napus (2n = 38, AACC), the most important oil crop in the Brassica genus, is an allotetraploid that originated through natural doubling of chromosomes after the hybridization of its progenitor species, B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC). A better understanding of the evolutionary relationship between B. napus and B. rapa, B. oleracea, as well as Arabidopsis, which has a common ancestor with these three species, will provide valuable information about the generation and evolution of allopolyploidy. Based on a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, we performed a comparative genomic analysis of B. napus with Arabidopsis and its progenitor species B. rapa and B. oleracea. Based on the collinear relationship of B. rapa and B. oleracea in the B. napus genetic map, the B. napus genome was found to consist of 70.1% of the skeleton components of the chromosomes of B. rapa and B. oleracea, with 17.7% of sequences derived from reciprocal translocation between homoeologous chromosomes between the A- and C-genome and 3.6% of sequences derived from reciprocal translocation between non-homologous chromosomes at both intra- and inter-genomic levels. The current study thus provides insights into the formation and evolution of the allotetraploid B. napus genome, which will allow for more accurate transfer of genomic information from B. rapa, B. oleracea and Arabidopsis to B. napus.  相似文献   

16.
Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of “new” resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.  相似文献   

17.
We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F1 of a cross between two diverse Chinese cabbage (B. rapa ssp. pekinensis) inbred lines, ‘Chiifu-401-42’ (C) and ‘Kenshin-402-43’ (K) were used to construct the map. The map comprises a total of 556 markers, including 278 AFLP, 235 SSR, 25 RAPD and 18 ESTP, STS and CAPS markers. Ten linkage groups were identified and designated as R1–R10 through alignment and orientation using SSR markers in common with existing B. napus reference linkage maps. The total length of the linkage map was 1,182 cM with an average interval of 2.83 cM between adjacent loci. The length of linkage groups ranged from 81 to 161 cM for R04 and R06, respectively. The use of 235 SSR markers allowed us to align the A-genome chromosomes of B. napus with those of B. rapa ssp. pekinensis. The development of this map is vital to the integration of genome sequence and genetic information and will enable the international research community to share resources and data for the improvement of B. rapa and other cultivated Brassica species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

19.
Speciation involves the evolution of traits and genetic differences that contribute to reproductive isolation and the cessation of gene flow, and studying closely related species and divergent populations gives insight into how these phenomena proceed. Here, we document patterns of gene flow within and between two members of a rapid Neotropical species radiation, Costus pulverulentus and Costus scaber (Costaceae). These species co‐occur in the tropical rainforest and share pollinators, but are reproductively isolated by a series of prezygotic barriers, some of which show evidence of reinforcement at sympatric sites. Here, we genotype microsatellite markers in plants from eight sites that span the geographical range of both species, including four sympatric sites. We also genotype putative hybrids found at two sympatric sites. We find high levels of genetic isolation among populations within each species and low but detectable levels of introgression between species at sympatric sites. Putative hybrids identified by morphology are consistent with F1 or more advanced hybrids. Our results highlight the effectiveness of prezygotic isolating mechanisms at maintaining species boundaries in young radiations and provide empirical data on levels of gene flow consistent with reinforcement.  相似文献   

20.
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole‐genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C‐genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号