首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminium (Al) is the main factor that limits crop production in acidic soils. There is evidence that antioxidant enzymes such as superoxide dismutase (SOD) play a key role against Al‐induced oxidative stress in several plant species. Rye is one of the most Al‐tolerant cereals and exudes both citrate and malate from the roots in response to Al. The role of SOD against Al‐induced oxidative stress has not been studied in rye. Al accumulation, lipid peroxidation, H2O2 production and cell death were significantly higher in sensitive than in tolerant rye cultivars. Also, we characterised two genes for rye SOD: ScCu/ZnSOD and ScMnSOD. These genes were located on the chromosome arms of 2RS and 3RL, respectively, and their corresponding hypothetical proteins were putatively classified as cytosolic and mitochondrial, respectively. The phylogenetic relationships indicate that the two rye genes are orthologous to the corresponding genes of other Poaceae species. In addition, we studied Al‐induced changes in the expression profiles of mRNAs from ScCu/ZnSOD and ScMnSOD in the roots and leaves of tolerant Petkus and sensitive Riodeva rye. These genes are mainly expressed in roots in both ryes, their repression being induced by Al. The tolerant cultivar has more of both mRNAs than the sensitive line, indicating that they are probably involved in Al tolerance.  相似文献   

2.
The objective was to determine the possible links between the expression levels of genes involved in alternative glycolytic pathways, phosphorus (P) scavenging and recycling and Citrus tolerance to aluminum (Al) and/or P-deficiency. ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O × 0, 50 and 200 μM KH2PO4. C. sinensis displayed more tolerant to Al and P-deficiency than C. grandis. Under Al stress, C. sinensis accumulated more Al in roots and less Al in shoots than C. grandis. P concentration was higher in C. sinensis shoots and roots than in C. grandis ones. C. sinensis roots secreted more malate and citrate than C. grandis ones when exposed to Al. Al-induced-secretion of malate and citrate by excised roots from Al-treated seedlings decreased with increasing P supply. Al-induced-secretion of malate and citrate from roots and Al precipitation by P in roots might be responsible for Al-tolerance of C. sinensis. qRT-PCR analysis showed that Al-activated malate transporter (ALMT1), ATP-dependent phosphofructokinase (ATP-PFK), pyrophosphate-dependent phosphofructokinase (PPi-PFK), tonoplast adenosine-triphosphatase subunit A (V-ATPase A), tonoplast pyrophosphatase (V-PPiase), pyruvate kinase (PK), acid phosphatase (APase), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (ME) and malate dehydrogenase (MDH) genes might contribute to the tolerance of Citrus to Al and/or P-deficiency, but any single gene could not explain the differences between the two species. Citrus tolerance to Al and/or P-deficiency might be caused by the coordinated regulation of gene expression involved in alternative glycolytic pathways, P scavenging and recycling.  相似文献   

3.
Many elements of the lanthanide series exist as trivalent cations in solution below pH 6. The present study was carried out to investigate whether lanthanides could stimulate malate efflux from wheat (Triticum aestivum L.) roots, as has been found for trivalent aluminium (Al) cations. Excised root apices treated with 100 µm of each of seven different lanthanide elements (lanthanum, praseodymium, europium, gadolinium, terbium, erbium, and ytterbium) stimulated malate efflux, with five‐ to fifty‐fold more malate being released from an Al‐tolerant wheat line than from a near‐isogenic Al‐sensitive line. As erbium stimulated the greatest malate efflux of the lanthanides tested, this response was characterized further. The characteristics of the erbium‐activated efflux were similar to the Al‐activated efflux described previously suggesting that both of these ions activate the same transport mechanism. The capacity for erbium‐activated malate efflux cosegregated with Al tolerance in wheat seedlings derived from a cross between Al‐sensitive and Al‐tolerant near‐isogenic lines. This is the first study to identify cations, other than Al, which can activate malate release from wheat roots. It also provides additional evidence that malate efflux from root apices is the primary mechanism for Al tolerance in wheat.  相似文献   

4.
Among cereal crops, rye is one of the most tolerant species to aluminum. A candidate gene approach was used to determine the likely molecular identity of an Al tolerance locus (Alt4). Using PCR primers designed from a wheat aluminum tolerance gene encoding an aluminum-activated malate transporter (TaALMT1), a rye gene (ScALMT1) was amplified, cloned and sequenced. Subsequently, the ScALMT1 gene of rye was found to be located on 7RS by PCR amplification using the wheat–rye addition lines. SNP polymorphisms for this gene were detected among the parents of three F2 populations that segregate for the Alt4 locus. A map of the rye chromosome 7R, including the Alt4 locus ScALMT1 and several molecular markers, was constructed showing a complete co-segregation between Alt4 and ScALMT1. Furthermore, expression experiments were carried out to clarify the function of this candidate gene. Briefly, the ScALMT1 gene was found to be primarily expressed in the root apex and upregulated when aluminum was present in the medium. Five-fold differences in the expression were found between the Al tolerant and the Al non-tolerant genotypes. Additionally, much higher expression was detected in the rye genotypes than the moderately tolerant “Chinese Spring” wheat cultivar. These results suggest that the Alt4 locus encodes an aluminum-activated organic acid transporter gene that could be utilized to increase Al tolerance in Al sensitive plant species. Finally, TaALMT1 homologous sequences were identified in different grasses and in the dicotyledonous plant Phaseolus vulgaris. Our data support the hypothesis of the existence of a common mechanism of Al tolerance encoded by a gene located in the homoeologous group four of cereals. G. Fontecha and J. Silva-Navas contributed equally to this work.  相似文献   

5.
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD+-specific and displayed about 400-fold (k cat) and 1,050-fold (k cat?K m) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K i=5.8 mM) and excess L-malate (K i=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe2+ and Zn2+. Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.  相似文献   

6.
Soluble and mitochondrial malic dehydrogenases (MDH) were isolated from root tips of the halophyte Tamarix tetragyna L. grown in the presence and absence of NaCl. The activity of the enzymes isolated from root tips grown in the presence of NaCl was lower than that of the enzymes isolated from roots grown in absence of NaCl. The mitochondrial MDH was much more sensitive to salinity than the soluble MDH. The soluble enzyme from roots grown in NaCl had a higher Km for malate and lower Km for NAD than enzyme from the control roots. Addition of NaCl in vitro at 72 mM significantly stimulated the reductive activity of soluble MDH, while higher NaCl concentrations (240 mM and above) depressed enzyme activity. The inhibition of enzyme activity by various salts was found to be in the order MgCl2 > NaCl = KCl > Na2SO4. Mannitol at equiosmotic concentrations had no effect. Substrate inhibition, typical for oxaloacetate oxidation, was not observed at high NaCl concentrations in vitro and high substrate concentrations neutralized the inhibitory effect of NaCl. Increased coenzyme concentrations had no effect. In vitro NaCl increased the Km for malate and oxaloacetate already at relatively low concentrations. At the same time NaCl decreased the Km for NAD and NADH. The inhibitory effect of NaCl on enzyme activity seems not to be due to the effect on the Km alone. Soluble and mitochondrial MDH had different responses to pH changes, mitochondrial MDH being more sensitive. Mitochondrial MDH released from the particles had a similar response to that of the entire particles. Changes of pH modified the effect of NaCl on enzyme activity. It was postulated that NaCl apparently induces conformational changes in the enzyme.  相似文献   

7.
Genetic control of aluminium tolerance in rye (Secale cereale L.)   总被引:4,自引:0,他引:4  
 Aluminium (Al) tolerance in roots of two cultivars (“Ailés” and “JNK”) and two inbred lines (“Riodeva” and “Pool”) of rye was studied using intact roots immersed in a nutrient solution at a controlled pH and temperature. Both the cultivars and the inbred lines analysed showed high Al tolerance, this character being under multigenic control. The inbred line “Riodeva” was sensitive (non-telerant) at a concentration of 150 μM, whereas the “Ailes” cultivar showed the highest level of Al tolerance at this concentration. The segregation of aluminium-tolerance genes and several isozyme loci in different F1s, F2s and backcrosses between plants of “Ailés” and “Riodeva” were also studied. The segregation ratios obtained for aluminium tolerance in the F2s analysed were 3 : 1 and 15 : 1 (tolerant : non-tolerant) while in backcrosses they were 1 : 1 and 3 : 1. These results indicated that Al tolerance is controlled by, at least, two major dominant and independent loci in rye (Alt1 and Alt3). Linkage analyses carried out between Al-tolerance genes and several isozyme loci revealed that the Alt1 locus was linked to the aconitase-1 (Aco1), nicotinamide adenine dinucleotide dehydrogenase-2 (Ndh2), esterase-6 (Est6) and esterase-8 (Est8) loci, located on chromosome arm 6RL. The order obtained was Alt1-Aco1-Ndh2-Est6-Est8. The Alt3 locus was not linked to the Lap1, Aco1 and Ndh2 loci, located on chromosome arms, 6RS, 6RL and 6RL respectively. Therefore, the Alt3 locus is probably on a different chromosome. Received: 18 March 1997 / Accepted: 21 March 1997  相似文献   

8.
Summary The effects of A1 on the growth and mineral composition of different cultivars of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.) and rye (Secale cereale L.) growing in 1/5 strength Steinberg solutions containing 0 or 6 ppm A1 were evaluated after 32 days. Aluminum increased the concentrations of P and K in the roots and K in the tops of most of the cultivars tested. A1 tolerant triticale retained a lower concentration of Mg in the roots and tops than the A1 sensitive triticale, when subjected to A1 stress. In addition, A1 treatments resulted in smaller increases in root P for the A1 tolerant triticale than for the A1 sensitive cultivars.The concentration of root Ca and P of the A1 tolerant wheat cultivars were significantly below that of the more sensitive plants. Aluminum tolerance in rye appeared to be associated with lower Ca and higher Mg concentrations in the tops. The accumulation of P and A1 in the roots was characteristic of sensitivity in triticale, wheat and rye.  相似文献   

9.
Gamma-radiation-induced chromosomal interchanges in two inbred lines of rye were analyzed by using the C-banding technique. Neither the doses of radiation nor the time elapsed between radiation and cytological observation influenced the contribution of individual chromosomes to the observed interchanges. Dicentric are more frequent than monocentric interchanges. Neither the individual chromosome contribution to interchanges nor the chromosome combinations fit a random distribution. Chromosomes 6(5R), 4(4R) and 7(1R) of the inbred line Pool and 6(5R), 5(6R) and 4(4R) of line Riodeva, which are carriers of large amounts of heterochromatin, are much more frequently involved in interchanges than expected. Likewise, they are involved in the most frequent combinations observed (6-4, 6-7, 4-5, 4-7 and 6-3 (2R) in line Pool and 6-5, 6-4, 4-5 and 6-7 in line Riodeva). The role of C-heterochromatin in radiation-induced chromosomal interchanges is discussed.  相似文献   

10.
The lactate and malate dehydrogenases comprise a complex protein superfamily with multiple enzyme homologues found in eubacteria, archaebacteria, and eukaryotes. In this study we describe the sequence and phylogenetic relationships of a malate dehydrogenase (MDH) gene from the amitochondriate diplomonad protist, Giardia lamblia. Parsimony, distance, and maximum-likelihood analyses of the MDH protein family solidly position G. lamblia MDH within a eukaryote cytosolic MDH clade, to the exclusion of chloroplast, mitochondrial, and peroxisomal homologues. Furthermore, G. lamblia MDH is specifically related to a homologue from Trichomonas vaginalis. This MDH topology, together with published phylogenetic analyses of β-tubulin, chaperonin 60, valyl-tRNA synthetase, and EF-1α, suggests a sister-group relationship between diplomonads and parabasalids. Since these amitochondriate lineages contain genes encoding proteins which are characteristic of mitochondria and α-proteobacteria, their shared ancestry suggests that mitochondrial properties were lost in the common ancestor of both groups. Received: 14 September 1998 / Accepted: 29 December 1998  相似文献   

11.
R.-A. Walk  B. Hock 《Planta》1976,129(1):27-32
Summary Specific antibodies were prepared against the purified mitochondrial malate dehydrogenase (EC 1.1.1.37) from cotyledons of watermelon seedlings (Citrullus vulgaris Schrad.). The isoenzyme was assayed by means of quantitative radial immunodiffusion. Cotyledons of ungerminated seeds were found to contain mitochondrial MDH. During the first 4 days of germination the enzyme activity increased threefold finally contributing 16% to the total MDH activity extracted from cotyledon tissue. Isopycnic CsCl density centrifugation was used to investigate the mode of activity increase. After a four-day period of labelling with deuterium oxide and purification of the mitochondrial isoenzyme, a density shift of 0.021kgx1-1, accompanied by considerable band broadening of the enzyme profile was observed. These findings are evidence for the de novo synthesis of mitochondrial MDH and its relatively slow turnover in germinating seeds.Abbreviations mMDH mitochondrial malate dehydrogenase - D2O deuterium oxide  相似文献   

12.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

13.
Summary Screening large populations of plant species for Al tolerance requires simple and rapid tests. In this study, root characteristics of 12 cultivars of triticale (X Triticosecale, Witt Mack), wheat (Triticum aestivum L.), and rye (Secale cereale L.) were measured in nutrient solution with 0 or 6 ppm Al added. Aluminum injury to roots of triticale and wheat was characterized by decreases in root length, increases in the number of roots, and in Al-sensitive Redcoat and Arthur wheats by decrease in root weight. Root length and number of roots were correlated in triticale (r=−0.73*) and in wheat (r=−0.85*). Root length was also correlated with root weight in wheat (r=0.65*); there was no relationship between the number of roots and weight. Differences in Al tolerance of cultivars of the three species were greater when the solution was adjusted to pH 4.8 only on the first day of the experiment than when pH was maintained at pH 4.8 throughout the growing period. Triticale and rye cultivars low in ability to increase solution pH gradually overcame Al toxicity by increasing the nutrient solution pH between 12 and 22 days. Aluminum sensitive triticale and wheat accumulated more Al in roots than tolerant cultivars when the solution pH was not adjusted daily; but no differences in Al accumulation were obtained between wheat cultivars at constant pH value. This study indicated that root length and number of roots can be reliably used for screening triticales for Al tolerance within 12 days of exposure to Al. Root length, Al concentration, and dry weight after 22 days of Al treatment were also reliable criteria for evaluating differential Al tolerances among triticale cultivars.  相似文献   

14.
Aluminium (Al) toxicity decreases plant growth. Secale cereale L. is among the most Al-tolerant crop species. In order to study the response to Al-long term exposure, two rye genotypes with different Al sensitivity (‘D. Zlote’ and ‘Riodeva’) were exposed to 1.11 and 1.85 mM Al and the antioxidant responses were followed for 2 and 3 weeks in roots and leaves. Al toxicity signals, such as a severe decrease in root growth, occurred sooner in ‘Riodeva.’ The antioxidant response was dependent on the genotype, the organ, Al concentration and the exposure period. Al-exposed roots of ‘D. Zlote’ showed earlier enhancements of APX, SOD and G-POX activities than those of ‘Riodeva.’ ‘D. Zlote’ roots showed stimulation of the AsA–GSH cycle after the second week (when root growth inhibition was less severe), while later (when severe root growth inhibition was observed), oxidation of AsA and GSH pools was observed. In leaves of both genotypes, CAT, SOD and G-POX activities increased with Al exposure. In these leaves, the effect of AsA–GSH was time dependent, with maximum oxidation at the second week, followed by recovery. We confirmed that the oxidation state of AsA and GSH pools is involved in the detoxification of Al-induced oxidative stress. Moreover, our data demonstrate that the production of ROS does not correlate with the Al-induced root growth decrease. Finally, the differences observed over time indicate that long term exposure may provide additional information on rye sensitivity to Al, and contribute to a better understanding of this species’ mechanisms of Al tolerance.  相似文献   

15.
Summary Yeast mutants deficient in the constitutive ADHI (adc1) were used for the isolation of mutants with deficiencies of the intermediary carbon metabolism, and of mutants defective in carbon catabolite derepression. Mutants were recognized by their inability to grow on YEP-glycerol and/or on ethanol synthetic complete medium. They were either defective in isocitrate lyase (icl1), succinate dehydrogenase (sdh1), or malate dehydrogenase (mdh1, mdh2), mdh-mutants could not uniformely be appointed to one of the known MDH isozymes. Homozygous mdh and sdh1 diploids are unable to sporulate.Three gene loci could be identified by mutants pleiotropically defective in many or all of the enzymes tested. In ccr1 mutants, derepression of isocitrate lyase, fructose-1,6-diphosphatase, ADHII and possibly of the cytoplasmic MDH is prevented, whereas the mitochondrial TCA-cycle enzymes, succinate dehydrogenase and malate dehydrogenase, are not significantly affected. CCR2 and CCR3 have quite similar action spectra. Both genes are obviously necessary for derepression of all enzymes tested. It could be shown that ccr1, ccr2 and ccr3 mutants are not respiratory deficient.  相似文献   

16.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

17.
Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library’s suitability for investigating Al tolerance genes. The library provides 6 × genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Malate dehydrogenase of maize exists in multiple molecular forms (isozymes). In strain W64A, two soluble forms (s-MDH), five mitochondrial forms (m-MDH), and two glyoxysomal forms (g-MDH) were found in etiolated seedlings. The s-MDHs and m-MDHs were prepared in highly purified form. Using these purified isozymes, experiments with reducing agents (100 mm mercaptoethanol), low pH (2.0), and high salt cocn (7.5 m guanidine-HCl), along with genetic data, have eliminated the possibility of conformational alterations as an explanation for MDH multiplicity in maize; the MDH isozymes are genetically determined. Biochemical properties for each of the seven MDH isozymes were examined. Molecular weight, pI, pH optimum, thermolability, and Km for oxaloacetate, malate, NAD, and NADH at different pH values were determined for each isozyme. Different kinetics of substrate inhibition (oxaloacetate) and coenzyme inhibition (NAD) were observed for the different isozymes. Effects of NAD analogs, chelating agents, reducing agents, metal ions, and TCA cycle acids on the enzymatic activity of these isozymes were tested. Based on the physical and kinetic properties observed, the maize malate dehydrogenase isozymes can be classified into four groups: s-MDH1; s-MDH2; the two most anodal m-MDHs; and the three most cathodal m-MDHs. Since strain W64A is highly inbred, our data along with our previous and simultaneous genetic analysis suggest that multiple genes are involved in the expression of maize malate dehydrogenase isozymes.  相似文献   

19.
Saccharomyces cerevisiae accumulates l-malic acid through a cytosolic pathway starting from pyruvic acid and involving the enzymes pyruvate carboxylase and malate dehydrogenase. In the present study, the role of malate dehydrogenase in the cytosolic pathway was studied. Overexpression of cytosolic malate dehydrogenase (MDH2) under either the strong inducible GAL10 or the constitutive PGK promoter causes a 6- to 16-fold increase in cytosolic MDH activity in growth and production media and up to 3.7-fold increase in l-malic acid accumulation in the production medium. The high apparent K m of MDH2 for l-malic acid (11.8 mM) indicates a low affinity of the enzyme for this acid, which is consistent with the cytosolic function of the enzyme and differs from the previously published K m of the mitochondrial enzyme (MDH1, 0.28 mM). Under conditions of MDH2 overexpression, pyruvate carboxylase appears to be a limiting factor, thus providing a system for further metabolic engineering of l-malic acid production. The overexpression of MDH2 activity also causes an elevation in the accumulation of fumaric acid and citric acid. Accumulation of fumaric acid is presumably caused by high intracellular l-malic acid concentrations and the activity of the cytosolic fumarase. The accumulation of citric acid may suggest the intriguing possibility that cytosolic l-malic acid is a direct precursor of citric acid in yeast. Received: 22 January 1997 / Received revision: 14 April 1997 / Accepted: 19 April 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号