首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.  相似文献   

2.
Impacts of climate warming depend on the degree to which plants are constrained by adaptation to their climate‐of‐origin or exhibit broad climatic suitability. We grew cool‐origin, central and warm‐origin provenances of Eucalyptus tereticornis in an array of common temperature environments from 18 to 35.5°C to determine if this widely distributed tree species consists of geographically contrasting provenances with differentiated and narrow thermal niches, or if provenances share a common thermal niche. The temperature responses of photosynthesis, respiration, and growth were equivalent across the three provenances, reflecting a common thermal niche despite a 2,200 km geographic distance and 13°C difference in mean annual temperature at seed origin. The temperature dependence of growth was primarily mediated by changes in leaf area per unit plant mass, photosynthesis, and whole‐plant respiration. Thermal acclimation of leaf, stem, and root respiration moderated the increase in respiration with temperature, but acclimation was constrained at high temperatures. We conclude that this species consists of provenances that are not differentiated in their thermal responses, thus rejecting our hypothesis of adaptation to climate‐of‐origin and suggesting a shared thermal niche. In addition, growth declines with warming above the temperature optima were driven by reductions in whole‐plant leaf area and increased respiratory carbon losses. The impacts of climate warming will nonetheless vary across the geographic range of this and other such species, depending primarily on each provenance's climate position on the temperature response curves for photosynthesis, respiration, and growth.  相似文献   

3.
As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate‐shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5–38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate‐controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool‐origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20–60%. Warm‐origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool‐origin taxa are likely to benefit from warming, while warm‐origin taxa may be negatively affected.  相似文献   

4.
Choosing drought‐tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining dendroecological growth analysis with long‐term genetic field trials. Over 500 trees originating from 23 populations across western North America were destructively sampled in three experimental sites in southern British Columbia, representing a climate warming scenario. Growth after 32 years from provenances transferred southward or northward over long distances was significantly lower than growth of local populations. All populations were affected by a severe natural drought event in 2002. The provenances from the most southern locations showed the highest drought tolerance but low productivity. Local provenances were productive and drought tolerant. Provenances from the boreal north showed lower productivity and less drought tolerance on southern test sites than all other sources, implying that maladaptation to drought may prevent boreal populations from taking full advantage of more favorable growing conditions under projected climate change.  相似文献   

5.
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16–38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.  相似文献   

6.
Here, we conducted a meta‐analysis of experimental drought manipulation studies using rainout shelters in five sites of natural grassland ecosystems of Europe. The single studies assess the effects of extreme drought on the intraspecific variation of the specific leaf area (SLA), a proxy of plant growth. We evaluate and compare the effect size of the SLA response for the functional groups of forbs and grasses in temperate and sub‐Mediterranean systems. We hypothesized that the functional groups of grasses and forbs from temperate grassland systems have different strategies in short‐term drought response, measured as adjustment of SLA, with SLA‐reduction in grasses and SLA‐maintenance in forbs. Second, we hypothesized that grasses and forbs from sub‐Mediterranean systems do not differ in their drought response as both groups maintain their SLA. We found a significant decrease of SLA in grasses of the temperate systems in response to drought while SLA of forbs showed no significant response. Lower SLA is associated with enhanced water‐use efficiency under water stress and thus can be seen as a strategy of phenotypic adjustment. By contrast, in the sub‐Mediterranean systems, grasses significantly increased their SLA in the drought treatment. This result points towards a better growth performance of these grasses, which is most likely related to their strategy to allocate resources to belowground parts. The observed SLA reduction of forbs is most likely a direct drought response given that competitive effect of grasses is unlikely due to the scanty vegetation cover. We point out that phenotypic adjustment is an important driver of short‐term functional plant response to climatic extremes such as drought. Differential reactions of functional groups have to be interpreted against the background of the group's evolutionary configuration that can differ between climatic zones.  相似文献   

7.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

8.
In forests, the increase in atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water‐use efficiency (iWUE). However, in drought‐prone areas such as the Mediterranean Basin, it is not yet clear to what extent this “fertilizing” effect may compensate for drought‐induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960–2012 using annually resolved tree‐ring width and δ13C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci), and consequently iWUE. Different trends in the theoretical gas‐exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca, except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca. Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%–71.4%) than in oak stands (15.8%–46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the “fertilizing” effect of rising Ca, whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter‐annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.  相似文献   

9.
Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance‐related functional traits of a widespread gymnosperm (ponderosa pine – Pinus ponderosa) and angiosperm (trembling aspen – Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree‐to‐tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area‐to‐sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought‐related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms – a result that has important implications for process‐based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range‐limit context, helps elucidate a mechanistic understanding of range constraints.  相似文献   

10.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.  相似文献   

11.
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone.  相似文献   

12.
Climate projections propose that drought stress will become challenging for establishing trees. The magnitude of stress is dependent on tree species, provenance, and most likely also highly influenced by soil quality. European Beech (Fagus sylvatica) is of major ecological and economical importance in Central European forests. The species has an especially wide physiological and ecological amplitude enabling growth under various soil conditions within its distribution area in Central Europe. We studied the effects of extreme drought on beech saplings (second year) of four climatically distinct provenances growing on different soils (sandy loam and loamy sand) in a full factorial pot experiment. Foliar δ13C, δ15N, C, and N as well as above‐ and belowground growth parameters served as measures for stress level and plant growth. Low‐quality soil enhanced the effect of drought compared with qualitatively better soil for the above‐ and belowground growth parameters, but foliar δ13C values revealed that plant stress was still remarkable in loamy soil. For beeches of one provenance, negative sandy soil effects were clearly smaller than for the others, whereas for another provenance drought effects in sandy soil were sometimes fatal. Foliar δ15N was correlated with plant size during the experiment. Plasticity of beech provenances in their reaction to drought versus control conditions varied clearly. Although a general trend of declining growth under control or drought conditions in sandy soil was found compared to loamy soil, the magnitude of the effect of soil quality was highly provenance specific. Provenances seemed to show adaptations not only to drought but also to soil quality. Accordingly, scientists should integrate information about climatic pre‐adaptation and soil quality within the home range of populations for species distribution modeling and foresters should evaluate soil quality and climatic parameters when choosing donor populations for reforestation projects.  相似文献   

13.
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500–850 mm year−1) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April–September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.  相似文献   

14.
Climatic changes and weather extremes are causing shifts in distribution of tree species, affecting productivity of forests. With the northwards advance of deciduous species in Northern Europe, Scots pine (Pinus sylvestris L.) is predicted to decrease survival and productivity. Nevertheless, Scots pine have adapted to diverse environments, hence selection among its populations could be applied to sustain productivity of stands under changing climate. In this study, sensitivity of tree-ring width of Eastern European provenances of Scots pine differing by field performance (Dippoldiswalde, Eibenstock, Rytel, Gustrow, and Kalsnava) to weather extremes in three trials in Latvia (hemiboreal zone) was assessed via pointer year and tolerance analyses. The studied provenances were sensitive to winter temperature regime; the effects of water deficit and vegetation period’s length were also observed, likely due to warming. The sensitivity of tree-ring width to weather extremes, which differed among the provenances indicating plasticity of growth, correlated with field performance. Although transferred north, the top-performing provenances (Gustrow and Rytel) were able to promptly recover after cold spells as well as dry summers and were able to benefit from warm winters and precipitation-rich summers. The bottom-performing provenances (Dippoldiswalde and Eibenstock) were sensitive to cold spells and summer water deficit, yet were unable to benefit from warm winters, nor moist summers. Considering sensitivity and resilience of growth, the studied top-performing provenances, particularly Rytel, showed commercial potential in the hemiboreal region under warming climate.  相似文献   

15.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

16.
Worldwide, extreme climatic events such as drought and heatwaves are associated with forest mortality. However, the precise drivers of tree mortality at individual and stand levels vary considerably, with substantial gaps in knowledge across studies in biomes and continents. In 2010–2011, a drought‐associated heatwave occurred in south‐western Australia and drove sudden and rapid forest canopy collapse. Working in the Northern Jarrah (Eucalyptus marginata) Forest, we quantified the response of key overstory (E. marginata, Corymbia calophylla) and midstory (Banksia grandis, Allocasuarina fraseriana) tree species to the extreme climate event. Using transects spanning a gradient of drought impacts (minimal (50–100 m), transitional (100–150 m) and severe (30–60 m)), tree species mortality in relation to stand characteristics (stand basal area and stem density) and edaphic factors (soil depth) was determined. We show differential mortality between the two overstory species and the two midstory species corresponding to the drought‐associated heatwave. The dominant overstory species, E. marginata, had significantly higher mortality (~19%) than C. calophylla (~7%) in the severe zone. The midstory species, B. grandis, demonstrated substantially higher mortality (~59%) than A. fraseriana (~4%) in the transitional zone. Banksia grandis exhibited a substantial shift in structure in response to the drought‐associated heatwave in relation to tree size, basal area and soil depth. This study illustrates the role of climate extremes in driving ecosystem change and highlights the critical need to identify and quantify the resulting impact to help predict future forest die‐off events and to underpin forest management and conservation.  相似文献   

17.
In the search of timber species being tolerant towards summer droughts, which are expected to be more frequent in future, Douglas-fir is often discussed as a potential alternative for spruce in Central Europe. To assess physiological and growth reactions of Douglas-fir provenances towards climate- and weather-related environmental conditions we took advantage of a provenance trial with three sites in south-western Germany located along an elevation gradient. We examined six different provenances of Douglas-fir from North America for oxygen (δ18O) and carbon (δ13C) stable isotope composition in tree rings as well as for radial increment for a 7 year period and long-term height growth. Our results show that different Douglas-fir provenances clearly vary in their drought sensitivity at the driest and warmest site in the valley as shown by the radial growth decline in the extreme dry and hot year 2003. The growth decline in the provenances Pamelia Creek, Cameron Lake, Duncan Paldi and Conrad Creek could be clearly attributed to a reduction in stomatal conductance as assessed by the relations between δ18O and δ13C in the tree rings. These responses were not related to the long-term average climate at the places of origin of the provenances and the provenances with the lowest long-term (height) growth potential were the ones least affected in radial increment by the extreme drought of 2003. When selecting suitable Douglas-fir provenances, which are adapted to the climatic conditions projected for the future we thus might need to take into account the trade-off between the adaptation to extreme drought periods and the long-term growth performance. Site-specific evaluations of the probability of extreme drought events are thus needed to select the appropriate provenances.  相似文献   

18.
Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night‐time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night‐time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night‐time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night‐time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night‐time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions.  相似文献   

19.
Whereas warming enhances plant nutrient status and photosynthesis in most terrestrial ecosystems, dryland vegetation is vulnerable to the likely increases in evapotranspiration and reductions in soil moisture caused by elevated temperatures. Any warming‐induced declines in plant primary production and cover in drylands would increase erosion, land degradation, and desertification. We conducted a four‐year manipulative experiment in a semi‐arid Mediterranean ecosystem to evaluate the impacts of a ~2°C warming on the photosynthesis, transpiration, leaf nutrient status, chlorophyll content, isotopic composition, biomass growth, and postsummer survival of the native shrub Helianthemum squamatum. We predicted that warmed plants would show reduced photosynthetic activity and growth, primarily due to the greater stomatal limitation imposed by faster and more severe soil drying under warming. On average, warming reduced net photosynthetic rates by 36% across the study period. Despite this strong response, warming did not affect stomatal conductance and transpiration. The reduction of peak photosynthetic rates with warming was more pronounced in a drought year than in years with near‐average rainfall (75% and 25–40% reductions relative to controls, respectively), with no indications of photosynthetic acclimation to warming through time. Warmed plants had lower leaf N and P contents, δ13C, and sparser and smaller leaves than control plants. Warming reduced shoot dry mass production by 31%. However, warmed plants were able to cope with large reductions in net photosynthesis, leaf area, and shoot biomass production without changes in postsummer survival rates. Our findings highlight the key role of nonstomatal factors (biochemical and/or nutritional) in reducing net carbon assimilation rates and growth under warming, which has important implications for projections of plant carbon balance under the warmer and drier climatic scenario predicted for drylands worldwide. Projected climate warming over the coming decades could reduce net primary production by about one‐third in semi‐arid gypsum shrublands dominated by H. squamatum.  相似文献   

20.
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long‐term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (?66.5%) and Q. ilex (?17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005–2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra‐ and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long‐term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long‐term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species‐specific responses to drought, what may eventually lead to a partial community shift favoring the more drought‐resistant species. However, we also report a dampening of the treatment effect on the two drought‐sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号