首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase in richness of species and higher taxa going from higher to lower latitudes is one of the most studied global biogeographical patterns. Latitudinal trends in the interactions between species have, in contrast, hardly been studied at all, probably because recording interactions is much less straightforward than counting species. We have assembled two independent data sets which suggest that plant-pollinator interactions are not more ecologically specialised in the tropics compared to temperate latitudes. This is in contrast to a prevailing view that tropical ecological interactions tend towards higher specificity than their temperate counterparts.  相似文献   

2.
Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.  相似文献   

3.
The idea of pollination syndromes has been largely discussed but no formal quantitative evaluation has yet been conducted across angiosperms. We present the first systematic review of pollination syndromes that quantitatively tests whether the most effective pollinators for a species can be inferred from suites of floral traits for 417 plant species. Our results support the syndrome concept, indicating that convergent floral evolution is driven by adaptation to the most effective pollinator group. The predictability of pollination syndromes is greater in pollinator‐dependent species and in plants from tropical regions. Many plant species also have secondary pollinators that generally correspond to the ancestral pollinators documented in evolutionary studies. We discuss the utility and limitations of pollination syndromes and the role of secondary pollinators to understand floral ecology and evolution.  相似文献   

4.

Background and Aims

The underlying evolutionary processes of pollinator-driven floral diversification are still poorly understood. According to the Grant–Stebbins model speciation begins with adaptive local differentiation in the response to spatial heterogeneity in pollinators. Although this crucial process links the micro- and macroevolution of floral adaptation, it has received little attention. In this study geographical phenotypic variation was investigated in Patagonian Calceolaria polyrhiza and its pollinators, two oil-collecting bee species that differ in body size and geographical distribution.

Methods

Patterns of phenotypic variation were examined together with their relationships with pollinators and abiotic factors. Six floral and seven vegetative traits were measured in 45 populations distributed across the entire species range. Climatic and edaphic parameters were determined for 25 selected sites, 2–16 bees per site of the most frequent pollinator species were captured, and a critical flower–bee mechanical fitting trait involved in effective pollination was measured. Geographical patterns of phenotypic and environmental variation were examined using uni- and multivariate analyses. Decoupled geographical variation between corolla area and floral traits related to the mechanical fit of pollinators was explored using a Mantel test.

Key Results

The body length of pollinators and the floral traits related to mechanical fit were strongly correlated with each other. Geographical variation of the mechanical-fit-related traits was decoupled from variation in corolla size; the latter had a geographical pattern consistent with that of the vegetative traits and was mainly affected by climatic gradients.

Conclusions

The results are consistent with pollinators playing a key role in shaping floral phenotype at a geographical scale and promoting the differentiation of two floral ecotypes. The relationship between the critical floral-fit-related trait and bee length remained significant even in models that included various environmental variables and an allometric predictor (corolla area). The abiotic environment also has an important role, mainly affecting floral size. Decoupled geographical variation between floral mechanical-fit-related traits and floral size would represent a strategy to maintain plant–pollinator phenotypic matching in this environmentally heterogeneous area.  相似文献   

5.
6.
7.
The concept of pollination syndromes has been widely questioned, since plant–pollinator interactions have proved to be more generalist than was previously thought. We examined whether the network of a tropical high‐altitude grassland contained groups of plants and pollinators that interact preferentially with each other. A general binary matrix was created. To assess the robustness of myophily, in all analyses we considered: 1) the whole network, 2) the network after the wasps were removed, and 3) the network after the flies were removed. For each network we evaluated whether: 1) the observed interactions were more related to syndromes than expected by chance, compared to an expected matrix; 2) there was a modular structure; 3) the modules found were more related to syndromes than expected by chance, compared to another expected matrix; 4) the syndromes were equally robust. For this analysis, the general matrix was subdivided into smaller matrices that included each pollination syndrome separately. To test the influence of the functional groups of pollinators and the phylogeny of plants, in addition to the general matrix, we also considered the first expected matrix, a quantitative functional group and a plant phylogeny matrix. The pollination syndromes determined the pattern of interactions in the network: 69% of the total interactions resulted from the functional group of pollinators predicted by the plant syndrome. The network showed greater modularity (13 modules) than expected by chance, mostly consisting of the expected functional groups of pollinators and plant syndromes. The modules were associated with pollination syndromes more than was predicted by chance. Most of the variation in interactions was explained by functional groups of pollinators or by plant syndromes. Plant phylogeny did not account for a significant amount of variation in the interactions. Our findings support the concept of pollination syndromes. However, the interactions were not equally predicted by different pollination syndromes, and the accuracy of the prediction was strongest for ornithophily and melittophily.  相似文献   

8.
Quaternary climatic changes impacted species’ demography and distribution worldwide. Although response to climate change could have been modulated by mutualistic interactions with other species, studies exploring the dynamics of these interactions and their role facilitating species persistence during past climatic variations are scarce. In this work, we attempt to explore the spatial dynamic of Calceolaria polyrhiza and its oil-collecting bee pollinators during the last 120,000 years, identifying stable areas of persistence and statistically determining whether the distribution of pollinator-related floral ecotypes is associated with these shared areas of persistence. To do this, we used 395 presence records of the interacting species and constructed species palaeodistribution models. Additionally, we gathered phenotypic measures of the plant and used decision tree and multiple regression analyses to link the plant phenotypic divergence with the distribution of stable areas. Our species distribution models suggest that past climatic changes affected the interaction between C. polyrhiza and both bee species in time and space. While the interaction between the plant and C. caeruleus predominated in the Andean-Patagonian forest and was relatively stable in space and time, that was not the case for the pollinator C. cineraria in the Patagonian steppe. This, along with our analyses of spatial phenotypic divergence, indicates that current floral phenotypes are the result of two historical different pollination regimes.  相似文献   

9.
John D. Thompson 《Oecologia》2001,126(3):386-394
Diverse pollinator assemblages may impose complex selection and thus limit specialisation to particular pollinators. Previous work has concentrated on how visitation rates of different pollinators vary in space and time and how pollinators may vary in efficiency. In this study I quantify variation in visitation rates and foraging behaviour of different insect types (1) in space and time and (2) in relation to variation in floral design (flower size and form) and floral display (number of open flowers) for the distylous clonal shrub Jasminum fruticans. Mean visitation rate showed a significant interaction between insect type and population for seven populations in one year, and between insect types and years for a single population over 3 years. There was also a significant interaction between insect type and population for the proportion of flowers visited. In general the number of visits was positively related to the number of open flowers in a patch, but analyses by insect type showed that this was only true for bee flies and butterflies. Short-tongued bees showed a positive relationship between visitation rate and the number of open flowers on the focal stem, and hawkmoths and butterflies made more visits to plants with larger flowers. Hawkmoths were the only insect type to show a positive relation between the number of flowers visited per foraging bout and flower size. The significant differences between different insect types in patterns of variation in visitation rates in response to floral design and display may act to diversify selection on floral traits, and thereby constrain specialisation of the plant to particular pollinators.  相似文献   

10.
In fragmented habitats, one cause of the decrease of plant diversity and abundance is the disruption of plant–animal interactions, and in particular plant–pollinator interactions. Since habitat fragmentation acts both on pollinator behaviour and plant reproduction, its consequences for the stability of such interactions are complex. An extreme case of habitat fragmentation occurs in urbanised areas where suitable habitat (in the present study small patches around ornamental trees) is embedded in a highly unsuitable environment (concrete matrix). Based on simple experiments, we ask whether pollinators can adapt their foraging behaviour in response to the amount of available resources (flowers) in the fragments and their isolation, as predicted by the optimal foraging theory. To do so we analysed the effect of fragmentation on the behaviour of pollinators visiting Crepis sancta (L.) Bornm. (Asteraceae), which forms large populations in the countryside and patchy populations in urban environments. More precisely we studied pollinator visitation rates, capitulum visit durations, capitulum search durations and capitulum size choice. Pollinators chose larger capitula in both types of populations and their foraging behaviour differed between the two population types in three ways: (1) pollinator visits were lower in urban fragmented populations, perhaps due to the lower accessibility of urban patches; (2) capitulum visit durations were longer in urban fragmented populations, a possible compensation of energy lost during flights among patches; and (3) capitulum search durations where longer in urban fragmented populations, which may represent an increase in capitulum prospecting effort. We discuss the possible impacts of such differences for plant population functioning in the two types of populations.  相似文献   

11.
Genotype‐by‐environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide‐ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.  相似文献   

12.
The ability of animals to find and consume hoarded seeds (i.e. seed recovery) is a key stage within the seed dispersal process. However, the ecology of seed recovery is still poorly understood. Here, we analyze the factors controlling seed recovery by scatter‐hoarding rodents in an oak‐dominated temperate forest. We examined the relative importance of intrinsic seed traits (i.e. plant‐driven) and extrinsic seed factors (i.e. animal‐driven) on the probability of seed recovery. We found that seed recovery is mainly driven by extrinsic seed factors, mostly related to animal behavior (pilfering frequency, microsite preference, predation risk, burial depth and cache size). Important intrinsic traits such as seed size, seed quality and seed‐drop timing were, on average, of lower significance in the probability of seed recovery (2.8‐times less important than extrinsic factors); only seed quality was an important intrinsic trait. On the other hand, larger and nutritionally more valuable seeds showed a removal–recovery tradeoff as they enhance seed removal and hoarding (increasing dispersal quality) but also favour seed recovery (increasing predation). We find that other mechanisms beyond seed traits (e.g. masting) are needed to decrease seed recovery and, thus, increase seed survival. We conclude that, as seed recovery is mostly driven by animal behavioural factors, it substantially differs from other previous stages of the seed dispersal process that are more dependent on seed traits. We argue that seed recovery needs further attention to advance our understanding of the ecology of seed dispersal and the role of secondary dispersers as a selective force for seeds.  相似文献   

13.
Dan Malkinson  Katja Tielbörger 《Oikos》2010,119(10):1546-1552
In recent years the importance of facilitative interactions in ecological communities is increasingly recognized. This phenomenon has been observed repeatedly, particularly in vegetation communities, in a wide range of environmental conditions. The current hypothesis predicts that the role of facilitation becomes increasingly important in conjunction with increasing stress. Several empirical studies, however, failed to detect such patterns, particularly at the extreme ends of the stress gradients. Herein, we present a conceptual model that may resolve discrepancies between expected and observed and provides a more precise framework of the existing hypotheses. By relaxing two common assumptions commonly used by the stress‐gradient hypothesis (SGH) we are able to demonstrate that under some circumstances the importance of facilitation may be less at the extreme ends of these gradients. Namely, we first re‐emphasize the notion that physiological response is not linear with respect to environmental changes along stress gradients. Second, it is argued that the net outcome of facilitative and competitive interactions is reflected in the fitness of individuals as a product of these two processes, in contrast to the commonly applied assumption of additivity. Accordingly, a synthesis of the concepts of population biology (measures of fitness) and plant physiology (nonlinear responses) with the stress gradient hypothesis while retaining the original simplicity of the SGH model contributes to a better specification of the predictions of the stress‐gradient hypothesis and the resolution of observed contradictions.  相似文献   

14.
Hargreaves AL  Johnson SD  Nol E 《Oecologia》2004,140(2):295-301
We investigated whether the ornithophilous floral syndrome exhibited in an African sugarbush, Protea roupelliae (Proteaceae), reflects ecological specialization for bird-pollination. A breeding system experiment established that the species is self-compatible, but dependent on visits by pollinators for seed set. The cup-shaped inflorescences were visited by a wide range of insect and bird species; however inflorescences from which birds, but not insects, were excluded by wire cages set few seeds relative to open-pollinated controls. One species, the malachite sunbird (Nectarinia famosa), accounted for more than 80% of all birds captured in P. roupelliae stands and carried the largest protea pollen loads. A single visit by this sunbird species was enough to increase seed set considerably over unvisited, bagged inflorescences. Our results show that P. roupelliae is largely dependent on birds for pollination, and thus confirm the utility of floral syndromes for generating hypotheses about the ecology of pollination systems.  相似文献   

15.
《Plant Ecology & Diversity》2013,6(5-6):403-418
Background: Intraspecific variations in floral traits of species over its geographic range can be associated with differences in pollinator assemblages and/or with environmental conditions.

Aims: We evaluated the area of elaiophores in different populations of Stigmaphyllon bonariense (n = 9) and S. jatrophifolium (n = 6), and we hypothesised a marked reduction in their size towards their southern limits of distribution, associated with different oil-collecting bee assemblages.

Methods: Area of elaiophores was calculated and we carried out linear correlations with floral size, pollinators, visitation rate and pollinator size along the latitudinal gradient of the plants’ distributions. Moreover, we examined the relative size relationships using allometric analyses, to verify this reduction.

Results: Floral elaiophore area decreased with latitude. However, for S. bonariense we observed an allometric reduction in elaiophore area with respect to floral size, while for S. jatrophifolium an isometric reduction was found. In both species, pollinator richness and visitation rate did not diminish with latitude, but pollinator size for S. bonariense varied.

Conclusions: Our results show a reduction in the size of elaiophores in both species along their distribution range, with dissimilar tendencies, suggesting that these species may have different selection pressures that cause variation of their phenotypic traits.  相似文献   

16.
17.
Barbara Hellriegel 《Oikos》2000,88(2):239-249
Data on the different stages of complex life cycles are often rather unbalanced, especially those concerning the effects of density. How does this affect our understanding of a species’ population dynamics? Two discrete three‐stage models with overlapping generations and delayed maturation are constructed to address this question. They assume that survival or emigration in any life stage and/or reproduction can be density dependent. A typical pond‐breeding amphibian species with a well‐studied larval stage serves as an example. Numerical results show that the population dynamics resulting from density dependence at a single (e.g. the larval) stage can be decisively and unpredictably modified by density dependence in additional stages. Superposition of density‐dependent processes could thus be one reason for the difficulties in identifying density dependence in the field. Moreover, in a simulated source‐refuge system with habitat‐specific density‐dependent dispersal of juveniles density dependence in multiple stages can stabilize or destabilize the dynamics and produce misleading age structures. From an applied perspective this model shows that excluding multistage regulation prematurely clearly affects our ability to predict consequences of human impacts.  相似文献   

18.
Sexual dimorphism in immunocompetence, usually in the directionof inferior male immunocompetence, has historically been explainedas the result of proximate physiological mechanisms such asthe immunosuppressive effects of the male hormone testosterone.More recently, it has been argued that this pattern is bestunderstood as a result of resource-based trade-offs betweenmale mating effort and immune defense, a trade-off that femalesdo not make. The central prediction of this hypothesis is thatas the strength of sexual selection on males increases, themagnitude of the sex differences in immunocompetence will increase.Two implicit assumptions of this argument are that 1) longevityis of more importance for female than for male fitness and 2)that the primary benefit of immunocompetence is increased longevity.However, both of these assumptions may not be as broadly applicableas has been argued. We have modeled the optimal allocation toimmunocompetence for males and females without making theseassumptions. We find that the optimal allocation to immune defensefor males decreases as the strength of sexual selection increases,as predicted. However, males may still invest more, relativeto females, into immunocompetence if the impact of parasiteson condition differs for the sexes and/or if the relationshipbetween condition and reproduction differs for the sexes. Weargue that these previously overlooked assumptions may be criticalfor predicting sex-specific patterns of immunocompetence.  相似文献   

19.
Waters JM  Roy MS 《Molecular ecology》2004,13(9):2797-2806
New Zealand's (NZ) geographical isolation, extensive coastline and well-characterized oceanography offer a valuable system for marine biogeographical research. Here we use mtDNA control region sequences in the abundant endemic sea-star Patiriella regularis to test the following literature-based predictions: that coastal upwelling disrupts north-south gene flow and promotes population differentiation (hypothesis 1); and that an invasive Tasmanian population of the species was introduced anthropogenically from southern New Zealand (hypothesis 2). We sequenced 114 samples from 22 geographical locations, including nine sites from North Island, nine from South Island, one from Stewart Island and three from Tasmania. Our analysis of these sequences revealed an abundance of shallow phylogenetic lineages within P. regularis (68 haplotypes, mean divergence 0.9%). We detected significant genetic heterogeneity between pooled samples from northern vs. southern New Zealand (FST = 0.072; P = 0.0002), consistent with the hypothesis that upwelling disrupts gene flow between these regions (hypothesis 1). However, we are currently unable to rule out the alternative hypothesis that Cook Strait represents a barrier to dispersal (North Island vs. South Island; FST = 0.031; P = 0.0467). The detection of significant spatial structure in NZ samples is consistent with restricted gene flow, and the strong structure evident in northern NZ may be facilitated by distinct ocean current systems. Four shared haplotypes and nonsignificant differentiation (FST = 0.025; P = 0.2525) between southern New Zealand and Tasmanian samples is consistent with an anthropogenic origin for the latter population (hypothesis 2).  相似文献   

20.
BACKGROUND: Trisomy 13 and Smith-Lemli-Opitz syndrome (SLOS) are both well-recognized multiple congenital anomaly/mental retardation syndromes. CASE: In this report we describe a male newborn with trisomy 13 who also has features of SLOS, such as 2/3 toe syndactyly and a shawl-like scrotum. Biochemical analysis was consistent with SLOS, and limited molecular analysis revealed 1 mutation in the DHCR7 gene. CONCLUSIONS: The challenges in establishing the diagnosis of SLOS in this patient are presented and the unique coexistence of the 2 major malformation syndromes is discussed. Given the overlapping phenotype of the 2 syndromes, our report should encourage further research on cholesterol biosynthesis in patients with trisomy 13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号