首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.  相似文献   

2.
    
Sarracenia purpurea L. (northern pitcher plant) is an insectivorous plant with extrafloral nectar that attracts insects to a water-filled pitfall trap. We identified and quantified the amino acids in extrafloral nectar produced by pitchers of S. purpurea. Nectar samples were collected from 32 pitchers using a wick-sampling technique. Samples were analyzed for amino acids with reverse-phase high-performance liquid chromatography with phenylisothiocyanate derivatization. Detectable amounts of amino acids were found in each of the 32 nectar samples tested. Mean number of amino acids in a nectar sample was 9 (SD = 2.2). No amino acid was detected in all 32 samples. Mean amount of amino acids in a nectar sample (i.e., amount per wick) was 351.4 ng (SD = 113.2). Nine amino acids occurred in 20 of the 32 samples (aspartic acid, cysteine, glutamic acid, glycine, histidine, hydroxyproline, methionine, serine, valine) averaging 263.4 ng (SD = 94.9), and accounting for ~75% of the total amino acid content. Nectar production may constitute a significant cost of carnivory since the nectar contains amino acids. However, some insects prefer nectar with amino acids and presence of amino acids may increase visitation and capture of insect prey.  相似文献   

3.
The results of ecological interactions depend on the costs and benefits involved in different ecological contexts. Turnera subulata is a shrubby plant with extrafloral nectaries that are associated with ants. Here, we test the hypotheses that the association between Tsubulata and ants results in: (i) positive effects on host plant growth and reproduction; (ii) plant herbivory reduction and (iii) inhibition of the host plant visitation by beneficial organisms. Thirty experimental plots were established in northeastern Brazil, either in association with ants or without ants (N = 15 plots/treatment), with four plants each (total 120 plants). Vegetative growth (plant height and number of leaves), reproductive investment (flowers and fruits), herbivory rates and numbers of beneficial visitors were quantified during all phenological stages of the host plant. Data were analysed using generalized linear mixed models. At the host plant maturation stage, we found a trade‐off between growth and reproduction. Plants with ants had lower mean height; however, they invested more in reproduction (a higher number of flowers and fruits) compared to plants without ants. During the flowering stage, the abundance of sucking herbivores was higher in plots without ants but chewing herbivore abundance increased in the maturation stage in plots with ants. The cumulative proportion of leaves with herbivore damage did not differ between treatments, and the presence of ants reduced the number of beneficial visitors (e.g. pollinators and natural enemies) to the host plants. Our results show that association with ants results in some costs for the host plant, however, these costs appear to be offset by the defensive role of ants, which favours plant reproductive investment. In general, our results help to elucidate mechanisms involved in trophic interactions within the complex network of interactions involving ants and plants.  相似文献   

4.
刘芳  娄永根  程家安 《昆虫知识》2003,40(6):481-486
综述了植物、植食性昆虫及其天敌相互作用的进化过程。虫害诱导的植物挥发物的特征和功能是植物-植食性昆虫-天敌之间长期进化的结果。在植物、植食性昆虫与天敌相互作用的进化过程中,3个不同营养级,包括植物、植食性昆虫和天敌有着各自的调节和利用虫害诱导的植物挥发物的策略。但有一些问题,如通过实验研究得出的诱导防御在田间是否真正能起到保护作用等需进一步研究、阐明。  相似文献   

5.
Abstract  Cabomba caroliniana is a submerged aquatic plant from South America that is becoming a serious weed worldwide. It spreads by seed and by fragmentation and has an extremely wide climatic range, invading lakes and ponds from tropical (Darwin, Australia: latitude 12°) to cold temperate regions (Peterborough, Canada: latitude 45°). There are currently no effective methods of managing cabomba infestations and funding has been allocated to research biological methods. Surveys have examined cabomba in its native range and have identified several potential biological control agents. The most promising are a stem boring weevil ( Hydrotimetes natans ) and an aquatic moth ( Paracles spp.). Here we predict the change in cabomba populations after the introduction of the biological control agents. Our predictions are based on quantitative surveys of cabomba populations at three lakes in south-east Queensland, qualitative observations of cabomba in its native range, and conceptual knowledge of how the realised niche of cabomba might be affected by herbivore damage.  相似文献   

6.
    
Extrafloral nectar (EFN) mediates food‐for‐protection mutualisms between plants and ants. Such mutualisms exist within a complex web of biotic interactions, and in a framework provided by the abiotic environment. Both biotic and abiotic factors, therefore, affect the outcome of ant–plant interactions. We conducted an experiment to determine the effects of ant activity, and light intensity, on herbivory rates, growth, and reproductive fitness in Senna mexicana var. chapmanii, a perennial legume native to pine rockland habitats of south Florida. Forty plants were divided among four treatments in a factorial experimental design with two independent variables: ant activity and light intensity. Plants were divided equally between sunny and shady habitats, and ants were excluded from half of the plants in each habitat type. The presence of ants significantly reduced herbivory rates in S. chapmanii. In shaded habitats, the presence of ants had no effect on plant reproductive fitness, however, in sunny habitats plants with ants produced significantly more seeds over the duration of the 1‐yr study. Ants represent an important biotic defense against herbivores in S. chapmanii; however, their effects on plant fitness are dependent on light conditions. Pine rockland habitats in south Florida have been widely destroyed or mismanaged. In fragments that remain, suppression of fire has led to increased canopy closure and shading of the understory. These changes will likely negatively impact plants that rely on ants for defense. We highlight the importance of conservation efforts to preserve the pine rocklands and the fire regimes on which they rely.  相似文献   

7.
从福建梅花山自然保护区海拔450m和1 200m的常绿阔叶林中选取17种常绿乔、灌木,对其叶片虫食状和取食强度进行分析,结果如下:(1)17种植物叶片共有15种虫食状类型,每种叶片虫食状类型为8~14;虫食状出现频率0.02%~37.01%,其中缘食状出现频率最高(37.01%),叶中脉食状出现频率最低(0.02%)。(2)木荷(Schima superba)的取食强度最大(9.60%),栲树(Castanopsis fargesii)次之(6.61%),油茶(Camellia Oleifera)最小(0.34%)。(3)15种虫食状类型中有6对虫食状呈显著正相关,2对呈显著负相关。(4)海拔1 200m处的甜槠(Castanopsis eyrei)、木荷、栲树和连蕊茶(Camellia fraterna)比海拔450m处的同种植物叶片的虫食强度高,其中木荷差异最大,从13.81%降至2.93%。  相似文献   

8.
    
Abstract Ants (Hymenoptera: Formicidae) consume a broad spectrum of liquid food sources including nectar and honeydew, which play a key role in their diet especially in tropical forests. This study compares carbohydrates and amino acids from a representative spectrum of liquid sources used by ants in the canopy and understorey of a tropical rainforest in northern Queensland, Australia. Eighteen floral nectars, 16 extrafloral nectars, two wound sap and four homopteran honeydew sources were analysed using high performance liquid chromatography. Wounds comprised flower abscission scars on Normanbya normanbyi L. H. Bailey and bitemarks on Cardwellia sublimis F. Muell. where ants were actively involved in wounding. Discriminant analysis was performed to model differences between food sources in sugar and amino acid concentration and composition. All characteristics varied significantly among plant species. Honeydew contained a broader spectrum of sugars (including melezitose, raffinose, melibiose, lactose and maltose) than nectar (sucrose, glucose, fructose), but certain extrafloral nectars had similar amino acid profiles and, like honeydew sources, were often monopolized by ants. Most common amino acids across the sources were proline, alanine and threonine among 17 α‐amino acids identified. Interspecific variability concealed characteristic differences in sugar and amino acid parameters between nectar, honeydew and wound sap across all plants, but these types differed significantly when found on the same plant. Among all sources studied, only a few flower nectars were naturally not consumed by ants and they were significantly less attended than sugar controls in feeding trials. These nectars did not differ in sugars and amino acids from ant‐attended flower nectars, suggesting the activity of repellents. Apart from these exceptions, variability in amino acids and carbohydrates is proposed to play a key role in ant preferences and nutrition.  相似文献   

9.
Invasions by non‐native insects can have important ecological impacts, particularly on island ecosystems. However, the factors that promote the success of invaders relative to co‐occurring non‐invasive species remain unresolved. For invasive ants, access to carbohydrate resources via interactions with both extrafloral nectary‐bearing plants and honeydew‐excreting insects may accelerate the invasion process. A first step towards testing this hypothesis is to determine whether invasive ants respond to variation in the availability of carbohydrate resources, and whether this response differs from that of co‐occurring, non‐invasive ants. We investigated the effect of carbohydrate subsidies on the short‐term foraging and hemipteran‐tending behaviours of the invasive ant Anoplolepis gracilipes (Formicidae) and co‐occurring ant species on an extrafloral nectary‐bearing plant by experimentally manipulating carbohydrate levels and tracking ant recruitment. We conducted experiments in 2 years at two sites: one site was invaded by A. gracilipes prior to 2007 and the other became invaded during the course of our study, allowing pre‐ (2007) and post‐invasion (2009) comparisons. Short‐term increases in carbohydrate availability increased the density of A. gracilipes workers on plants by as much as 400% and reduced tending of honeydew‐excreting insects by this species by up to 89%, with similar responses across years. In contrast, ants at the uninvaded site in 2007 showed a weak and non‐significant forager recruitment response. Across all sites, A. gracilipes workers were the only ants that responded to carbohydrate manipulations in 2009. Furthermore, ant–carbohydrate dynamics at a site newly invaded by A. gracilipes quickly diverged from dynamics at uninvaded sites and converged on those of the site with an established invasion. These findings suggest that carbohydrate resources may be particularly important for A. gracilipes invasions, and underscore the importance of species interactions, particularly putative mutualisms, in facilitating exotic species invasions.  相似文献   

10.
    
Although most crane fly larvae consume decaying plant materials and their associated microorganisms, all Libnotes species investigated so far are known to be xylophilous insects. Here we report the novel herbivorous feeding ecology of Libnotes puella. We found that L. puella larvae consumed the fruits or seeds of three unrelated plants, Mitrastemon yamamotoi (Mitrastemonaceae), Balanophora tobiracola (Balanophoraceae) and Barringtonia racemosa (Lecythidaceae). The larvae live within dense tubes formed by their feces fastened by their mucous excretions at the final stage, and they pupate within such tubes. This is the first detailed documentation of the fruit‐ and seed‐feeding habit of crane flies.  相似文献   

11.
Abstract.
  • 1 The role that amino acids in extrafloral nectars play in attracting ants to plants was investigated. Workers from laboratory colonies of Solenopsis invicta Buren and S.geminafa (F). (Formicidae) fed from artificial nectaries containing mimics of the extrafloral nectar of Passiflora menispermifoh and P.caerulea; P.menispermifoh nectar contains higher levels of amino acids (1347.3 pdml) than does the nectar of P.currulea (125.2 μm /ml).
  • 2 When sugar-only and sugar—amino acid nectar mimics were presented simultaneously, more S.invicta workers were counted at sugar—amino acid nectar mimics than at sugar-only nectars. S.geminatu did not discriminate between the two nectars.
  • 3 When the two Pamiflora L. nectar mimics were presented simultaneously, S.invicta and S.geminata workers were more abundant at the nectaries containing high levels of amino acids (P.menispermifolia HBK mimic) than at the nectaries containing low levels of amino acids (P.cuerulea L. mimic).
  • 4 The behaviour shown by S.invicta and S.gerninata suggests that plants with high levels of amino acids in their extrafloral nectars attract more ant protectors and might suffer less herbivory than plants producing nectars with low levels of amino acids. If so, ants may favour, over evolutionary time, plants that produce nectars with high levels of amino acids.
  • 5 Day-to-day variability in ant behaviour was considerable even among laboratory colonies maintained on the same diet in similar environmental conditions. This variability will reduce the selective impact that ants have on plants and may help to explain why most ant-plant interactions are facultative.
  相似文献   

12.
The richness and seasonal variation of ant-plant interactions were compared in four habitats in México: lowland tropical dry forest (La Mancha, Veracruz), coastal sand dune matorral (San Benito, Yucatán), semiarid highland vegetation (Zapotitlán, Puebla), and lower montane humid forest (Xalapa, Veracruz). The effects of temperature and precipitation on the seasonal distribution of the number of ant-plant interactions differed among habitats. The general linear models fitted to the ant-plant interaction curves explained 78.8 percent of the variation for La Mancha, 80.1 percent for Zapotitlán, 18 percent for San Benito, and 29.5 percent for Xalapa. Even though rainfall is low in Zapotitlán and San Benito, minimum temperature was the most important factor accounting for the seasonal distribution and low number of interactions. At La Mancha, with milder minimum temperatures and higher water availability, temperature alone did not account for the seasonal distribution and number of interactions, whereas the effect of the precipitation × temperature interaction was highly significant. Xalapa exhibits the lowest temperatures and the highest precipitation, but the role of these factors was only marginal. We suggest that the vegetation at Xalapa, a mixture of tropical and temperate floristic elements, constrains ant-plant interactions due to a limited presence of nectaries. Also, ants are less abundant in cool and relatively aseasonal habitats. The other habitats have tropical floristic elements that are abundant and frequently have nectar-producing structures. We report considerable variation among habitats in the number and seasonal distribution of ant-plant interactions, and suggest that it is due to the effect of variation in environmental parameters, the richness of plants with nectaries in the vegetation, and habitat heterogeneity.  相似文献   

13.
    
The Brazilian Atlantic Forest has been replaced by homogeneous tree monocultures with potentially drastic effect on ecological interactions. We expect that ecologically‐managed tree monocultures, however, can help to mitigate this impact. Here, we carried out an experiment with Inga vera (Fabaceae), an extrafloral nectary bearing plant, to test if the efficiency of ants as anti‐herbivory defense is affected by the replacement of its natural habitat (Araucaria Forest) by ecologically‐managed tree monocultures (plantations of Araucaria, Pinus, and Eucalyptus). Seedlings of Inga vera were transplanted to three patches of each habitat and ants were excluded from half of the plants. The abundance of ants and herbivores was low, similar among habitats, and exhibited temporal asynchrony. Number of herbivores and accumulated herbivory levels were lower in plant with ants. Rates of herbivory were extremely low and lower for young leaves than for mature leaves. The presence of ants did not affect plant performance traits measured by their growth in height, and their final numbers of leaves and leaflets. Contrary to what might be expected, ant‐protected plants produced fewer leaves and leaflets than unprotected ones. In conclusion, Inga vera‐ant interaction was similar between its natural habitat and the tree monocultures, indicating that potentially both species diversity and ecological processes can be conserved in ecologically‐managed tree monocultures.  相似文献   

14.
    
  • 1 Diversifying agricultural ecosystems to enhance biological control is a promising way of promoting sustainable pest management.
  • 2 In the present study, monoculture apple and peach with standard insecticide treatments were compared with three biodiverse treatments (polyculure, monoculture with companion plants and polyculture with companion plants) with reduced standard insecticide use.
  • 3 Abundance of insect predators was increased by both the presence of companion plants and extrafloral nectar but parasitism of the leafroller Platynota idaeusalis was not affected.
  • 4 There were no consistent effects of biodiversity treatment on either tree growth or fruit yield. Insect injury to Empire apple and peach fruit was not consistently affected by the biodiversity treatments. Granny Smith apples were harvested later than Empire and had more fruit injury in the biodiverse treatments than the standard insecticide control.
  • 5 A reduction in pesticides with added biodiversity proved to be a viable alternative to standard chemical insecticide management for temperate tree fruit. Increases in the natural control of pests resulting from increased plant diversity has promise for reducing the reliance on chemical insecticides for pest suppression.
  相似文献   

15.
Extrafloral (EF) nectaries recruit carnivorous arthropods that protect plants from herbivory, but they can also be exploited by nectar thieves. We studied the opportunistic, targeted predation (and destruction) of EF nectaries by insects, and the localized chemical defences that plants presumably use to minimize this effect. In field and laboratory experiments, we identified insects that were possibly responsible for EF nectary predation in Vicia faba (fava bean) and determined the extent and accuracy of the feeding damage done to the EF nectaries by these insects. We also performed biochemical analyses of plant tissue samples in order to detect microscale distribution patterns of chemical defences in the area of the EF nectary. We observed selective, targeted feeding on EF nectaries by several insect species, including some that are otherwise not primarily herbivorous. Biochemical analyses revealed high concentrations of l-3,4-dihydroxyphenylalanine, a non-protein amino acid that is toxic to insects, near and within the EF nectaries. These results suggest that plants allocate defences to the protection of EF nectaries from predation, consistent with expectations of optimal defence theory, and that this may not be entirely effective, as insects limit their exposure to these defences by consuming only the secreting tissue of the nectary.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Flower morphology, nectary structure, nectar chemical composition, breeding system, floral visitors and pollination were analysed in Croton sarcopetalus , a diclinous-monoecious shrub from Argentina. Male flowers have five receptacular nectaries, with no special vascular bundles, that consist of a uniserial epidermis with stomata subtended by a secretory parenchyma. Female flowers bear two different types of nectaries: inner (IN) and outer (ON) floral nectaries. IN, five in all, are structurally similar to the nectaries of male flowers. The five ON are vascularized, stalked, and composed of secretory, column-shaped epidermal cells without stomata subtended by secretory and ground parenchyma. In addition, ON act as post-floral nectaries secreting nectar during fruit ripening. Extrafloral nectaries (EFN) are located on petioles, stipules and leaf margins. Petiolar EFN are patelliform, stalked and anatomically similar to the ON of the female flower. Nectar sampled from all nectary types is hexose dominant, except for the ON of the female flower at the post-floral stage that is sucrose dominant. The species is self-compatible, but geitonogamous fertilization is rarely possible because male and female flowers are not usually open at the same time in the same individual, i.e. there is temporal dioecism. Flowers are visited by 22 insect species, wasps being the most important group of pollinators. No significant differences were found in fruit and seed set between natural and hand pollinated flowers. This pattern indicates that fruit production in this species is not pollen/pollinator limited and is mediated by a wide array of pollinators.  相似文献   

17.
18.
Organic agriculture is increasing in popularity worldwide due to the rapidly growing market for organic products. In organic production, insects present a major pest challenge that negatively impacts crop health and yield. To successfully manage an organic farmland, an effective insect pest management program is key. In this review, we first describe the approaches currently used for pest management in organic farming. Next, we review natural plant defense mechanisms, especially those based on plant volatile organic compounds. Chemically complex, plant volatiles have multiple ecological roles in plant-insect interactions including attracting pollinators, acting as cues for foraging herbivores as well as functioning as direct defense, indirect defense, or interplant priming. Based on the ecological roles of plant volatiles, we then discuss in-depth how pest management may be improved through a variety of strategies including using resistant cultivars, polyculture, using beneficial microorganisms such as mycorrhizal fungi and endophytes, and using plant-derived pesticides, all of which are reviewed in the context of plant volatiles. Lastly, integration of these different strategies based on the trait of plant volatiles for a successful and sustainable pest management program in organic farming is discussed.  相似文献   

19.
Schinus terebinthifolia Raddi (Anacardiaceae) (Brazilian peppertree) is one of the most serious terrestrial invasive plants in Florida. The leaf galling psyllid, Calophya latiforceps Burckhardt (Hemiptera: Calophyidae), was discovered feeding on the Brazilian peppertree in Bahia, Brazil, in 2010, and is being evaluated for release as a biological control agent. In order to understand how this candidate biological control agent affects the growth of S. terebinthifolia, we measured the effect of the psyllid on photosynthesis, leaf chlorophyll content and plant growth. Infested plants had lower photosynthesis compared to uninfested plants 30 and 45 days after gall initiation, and chlorophyll content was lower over a 70-d period. Plant height was reduced 31% and biomass 11% after three months of infestation. Results of these studies suggest that C. latiforceps will negatively affect the growth of the Brazilian peppertree if released in Florida.  相似文献   

20.
  总被引:5,自引:0,他引:5  
Indirect plant defences have largely been studied within the scope of above‐ground interactions. Here we provide novel evidence that root herbivory can induce an above‐ground indirect defence. Cotton plants (Gossypium herbaceum) exposed to root‐feeding wireworms (Agriotes lineatus) increased their foliar extrafloral nectar production ten‐fold in comparison to undamaged control plants. Mechanical root damage also yielded an increase in nectar production. In nature, extrafloral nectar production allows plants to recruit predators, which in turn protect the plant against above‐ground insect herbivores. Our results show that root‐feeding herbivores may alter such above‐ground defensive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号