首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Question: Landscape models of fire occurrence in ecosystems assume that the time since the last fire determines vegetation flammability by enabling the accumulation of dead biomass. In this study we ask if Mediterranean basin shrublands respond to these models or, on the contrary, if initial successional stages in these ecosystems could be more flammable than later stages. Location: Mediterranean shrubland in the Valencia region, eastern Spain. Methods: Using different stages of vegetation development (5, 9, 14 and 26 years since the last fire), we first study the structural comiosition of the above‐ground biomass in 375 individuals of nine woody species. Then, we measure how the standing dead biomass varies during succession, taking into account the surface cover of each species and the quantity of total dead biomass accumulated in different successional stages (3, 9, 14 and 26 years since the last fire). Results: The largest amount of standing dead biomass at the plant community level is observed in the middle stages of the succession. Early successional species, such as Cistus spp., Ulex parviflorus and Pinus halepensis, have a higher percentage of standing dead biomass at earlier stages in the succession than species typical of later successional stages, e.g. Juniperus oxycedrus, Quercus coccifera and Quercus ilex. Conclusions: The results suggest that monotonic increase in fire hazard with increasing stand age is not necessarily the rule in Mediterranean basin shrublands, since early successional species may accumulate large amounts of standing dead biomass and thus promote fire at early successional stages.  相似文献   

2.
Abstract. Differences in allocation patterns between seeders and resprouters in several Mediterranean plant communities (Australia, California and South Africa) have led to the prediction that seedlings of seeders grow faster than those of resprouters. In the Mediterranean Basin, it has also been hypothesized that regeneration strategy of plants after fire is associated with several other life history traits. This paper tests both hypotheses for the dominant plants in the Mediterranean Basin from literature data. Results show that seeders from the Mediterranean Basin grow significantly faster and allocate more biomass to leaf plus paracotyledons than resprouters. Seeders are mainly non‐sclerophyllous, anemochorous, dry‐fruited, small‐seeded species that evolved in the Quaternary (post‐Pliocene) and are associated with earlier successional stages. Resprouters are mainly sclero‐phyllous, vertebrate‐dispersed, fleshy‐fruited, large‐seeded species that evolved in the Tertiary (pre‐Pliocene) and are associated with late successional stages.  相似文献   

3.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

4.
M. Vil  F. Lloret 《植被学杂志》2000,11(4):597-606
Abstract. In Mediterranean shrublands, post‐fire accumulation of above‐ground biomass of resprouters is faster than that of seeders. This suggests that resprouters may have a competitive advantage. To test this hypothesis, we used a removal experiment to study the effect of the presence of the dominant tussock‐grass Ampelodesmos mauritanica on the resprouting shrubs Erica multiflora and Globularia alypum and on the seeders Rosmarinus officinalis and Pinus halepensis three and four years after a wildfire. Water potential of target plants was also measured to see if Ampelodesmos removal increased water availability. Ampelodesmos marginally reduced growth of all target species but did not influence survival or water potential of any target species. Our results suggest that the effect of climatically influenced water stress was stronger than the effect of Ampelodesmos neighbours. Plant‐plant interactions in this Mediterranean community are weak after fire and the magnitude of the Ampelodesmos effect does not differ between seeders and resprouters.  相似文献   

5.
Aims Fires play a crucial role mediating species interactions in the Mediterranean Basin, with one prominent example being the nursing effect of post-fire resprouting shrubs on tree recruits, which then outcompete their benefactors throughout succession. Yet, the community structuring role of resprouting shrubs as potential facilitators of post-fire recruiting subshrub species, which are commonly outcompeted in late post-fire stages, has been overlooked. The aims of this work were to investigate (i) whether proximity to resprouting shrubs increased the demographic performance of a fire-adapted carnivorous subshrub and (ii) whether mature shrubs negatively affected the performance of established plants through interference with prey capture.Methods To evaluate the facilitative effects of resprouting shrubs, we sowed seeds of Drosophyllum lusitanicum, a carnivorous, seeder pyrophyte, into two microhabitats in recently burned heathland patches defined by proximity to resprouting shrubs. We monitored key demographic rates of emerged seedlings for 2 years. To test for competitive effects of shrubs on plant performance at a later habitat regeneration stage, we placed greenhouse-reared, potted plants into distinct microhabitats in neighboring burned and unburned heathland patches and monitored prey capture. Both experiments were performed in the Aljibe Mountains at the Northern Strait of Gibraltar and were replicated in 2 years.Important findings Resprouting shrubs significantly improved survival, juvenile size and flowering probability compared with open microhabitats, and had no significantly negative effects on the growth of recruits. Prey capture was significantly lower in unburned heathland patches compared with burned ones, thus partly explaining the decrease in survival of Drosophyllum individuals in mature heathlands. However, microhabitat did not affect prey capture. Our findings suggest that not only periodic fires, removing biomass in mature stands, but also resprouting neighbors, increasing establishment success after fire, may be important for the viability of early successional pyrophytes.  相似文献   

6.
A major focus of invasion biology is understanding the traits associated with introduction success. Most studies assess these traits in the invaded region, while only few compare nonindigenous species to the pool of potential invaders in their native region. We focused on the niche breadth hypothesis, commonly evoked but seldom tested, which states that generalist species are more likely to become introduced as they are capable of thriving under a wide set of conditions. Based on the massive introduction of tropical species into the Mediterranean via the Suez Canal (Lessepsian migration), we defined ascidians in the Red Sea as the pool of potential invaders. We constructed unique settlement plates, each representing six different niches, to assess ascidian niche breadth, and deployed them in similar habitats in the native and invaded regions. For each species found on plates, we evaluated its abundance, relative abundance across successional stages, and niche breadth, and then compared (1) species in the Red Sea known to have been introduced into the Mediterranean (Lessepsian species) and those not known from the Mediterranean (non‐Lessepsian); and (2) nonindigenous and indigenous species in the Mediterranean. Lessepsian species identified on plates in the Red Sea demonstrated wider niche breadth than non‐Lessepsian species, supporting the niche breadth hypothesis within the native region. No differences were found between Lessepsian and non‐Lessepsian species in species abundance and successional stages. In the Mediterranean, nonindigenous species numerically dominated the settlement plates. This precluded robust comparisons of niche breadth between nonindigenous and indigenous species in the invaded region. In conclusion, using Red Sea ascidians as the pool of potential invaders, we found clear evidence supporting the niche breadth hypothesis in the native region. We suggest that such patterns may often be obscured when conducting trait‐based studies in the invaded regions alone. Our findings indicate that quantifying the niche breadth of species in their native regions will improve estimates of invasiveness potential.  相似文献   

7.
Regeneration mode is one of the key attributes determining population structure and dynamics of plant species. We investigated long-term patterns after fire in the cover of plant species in a 100-year chronosequence of burned Pinus brutia forests in a humid Mediterranean climate region in Turkey. Significant trends were present in the change of cover in major species through post-fire chronosequence, and species with similar trends were clustered in relation to their regeneration modes. Obligate resprouters increased their cover from the early post-fire years to the later stages, while cover of obligate seeders with a soil seed bank increased in the early years, but then decreased through time. Facultative resprouters were at an intermediate position, with an increase in cover until mid-successional stages and then a decrease through time. The cover of the only obligate seeder with a canopy seed bank (P. brutia) followed a linear increasing trend during the succession. When species with the same regeneration mode were grouped, the same trends were observed with more explained variances. A few life-history traits were enough to explain the observed trends. Our study shows that regeneration mode is an explanatory functional grouping system for describing long-term post-fire dynamics of Mediterranean Basin woody species. We suggest that regeneration mode must be a major component of any vegetation or forest stand dynamics model in the Mediterranean Basin. This result has important implications for the management of Mediterranean Basin ecosystems, and can potentially be extrapolated to other Mediterranean-type fire-prone ecosystems.  相似文献   

8.
Acknowledgments     
In this study we investigated the temporal variability of N-source utilization of pioneer plant species in different early successional stages of dry acidic grasslands. Current theory states that plant species occupy distinct ecological niches and that there are species-specific, temporal N-uptake patterns. We hypothesized that small-scale dynamics in the natural habitat may affect niche differentiation among plant species. We investigated N-uptake patterns of two co-occurring plant species from different functional groups (Corynephorus canescens, Rumex acetosella) under natural conditions using 15N-labeled nitrate and ammonium in three different early successional stages during early and late summer. We found (1) marked seasonal dynamics with respect to N-uptake and N-source partitioning, and (2) different uptake rates across successional stages but a similar N-form utilization of both species. Nitrate was the main N-source in the early and later successional stages, but a shift towards enhanced ammonium uptake occurred at the cryptogam stage in June. Both species increased N-uptake in the later successional stage in June, which was associated with increasing plant biomass in C. canescens, whereas R. acetosella showed no significant differences in plant biomass and root/shoot-ratio between successional stages. Ammonium uptake decreased in both species across all stages with increasing drought. Nevertheless, the peak time of N-uptake differed between the successional stages: in the early successional site, with the lowest soil N, plants were able to extend N-uptake into the drier season when uptake rates in the other successional stages had already declined markedly. Hence, we found a pronounced adjustment in the realized niches of co-occurring plant species with respect to N-uptake. Our results indicate that ecological niches can be highly dynamic and that niche sharing between plant species may occur instead of niche partitioning.  相似文献   

9.
Abstract. Gas exchange, leaf-nitrogen concentration and water potential were measured in early and late spring in early successional herbaceous plants occurring after cutting and after fire, and in mature woody species from the Mediterranean climax community Quercetum ilicis in central Italy. Net photosynthesis peaked in early spring in all species studied when values for temperature and light were lower but leaf-nitrogen content was higher as compared to late spring, suggesting that nitrogen more than energy input controlled photosynt-hetic rates. Herbaceous pioneer species occurring after cutting showed higher field photo synthetic capacity than evergreen climax trees and shrubs. By contrast, net photosynthesis of herbaceous species occurring in a persistent stage after fire, was in the same range as that of climax trees. This evidence suggests that carbon-gaining appears to be partly related to the dynamic stage of succession and not solely to the growth form.  相似文献   

10.
Non-native, invasive glossy buckthorn (Frangula alnus P. Mill.) threatens North American forests by inhibiting tree regeneration. While glossy buckthorn commonly invades younger, developing forests, we hypothesized that this species is competitively excluded as secondary succession proceeds. Specifically, we tested the hypothesis that glossy buckthorn mortality in New Hampshire forests is associated with low levels of photosynthetically active radiation (PAR), low levels of nutrients in the soil, and greater abundance of shade tolerant tree species. Twenty-six living and 26 dead glossy buckthorn individuals were randomly selected on three, mid-successional study sites in southeastern New Hampshire, USA. Shrub ages, indicated by wood ring counts, showed that both living and dead shrubs were members of the same cohort, roughly 16–18 years of age. Living and dead shrubs were compared as to (1) tree basal area in the surrounding forest (estimated by plot sampling), (2) light intensity in the vicinity of the buckthorn crowns (measured by Sunfleck Ceptometer), (3) canopy openness and % total transmitted PAR (estimated by hemispheric photography), and (4) concentrations of available Ca, P, Mg, and K in the B horizon. Relative to live buckthorn shrubs, dead individuals were associated with greater basal area of shade tolerant species, decreased PAR in the vicinity of shrub crown, and decreased soil concentrations of Ca, P, and Mg. The results are consistent with the hypothesis that competition for light and perhaps nutrients limits the ability of glossy buckthorn to persist in late successional stands. If these relationships are causal, active removal of glossy buckthorn might not be required to reduce its abundance in late successional stands.  相似文献   

11.
Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8–16 years in eight successional rainforests. We tested whether successional changes in diversity–Δbiomass correlations reflect predictions of niche theories. Diversity–Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid‐successional stands, high biodiversity was associated with greater mortality‐driven biomass loss, i.e. negative selection effects, suggesting successional niche trade‐offs and loss of fast‐growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system.  相似文献   

12.
Abstract. Bryophyte dynamics after fire in the Mediterranean macchia of Southern Italy was studied both by diachronic and synchronic approaches. Changes of bryophyte cover and species composition were found in relation to both age and fire intensity. During the first 2 yr after fire, bryophytes dominated the plots which had experienced the highest fire intensity while herbs were dominant in plots affected by lighter fires. Pioneer species, such as Funaria hygrometrica, Barbula convoluta and Bryum dunense, characterized recent intense fires, whereas Bryum torquescens, B. radiculosum and B. ruderale were dominant after less intense burning. Pleurochaete squarrosa, Tortula ruraliformis and Tortella flavovirens dominated intermediate successional stages. Pleurocarpous mosses were dominant only in the older closed stands. Different patterns of regeneration strategies were described: spores dominated early stages of intense fire, while vegetative propagules characterized later successional stages and less severely burned areas. Although bryophytes usually have a low abundance in Mediterranean vegetation, their role in post-fire vegetation dynamics may be locally enhanced according to burning conditions.  相似文献   

13.
Life‐history attributes can impose differences on root system structures and properties related to nutrient and water uptake. Here, we assess whether plants with different post‐fire regenerative strategies (resprouters, seeders and seeder–resprouters) differ in the topological and morphological properties of their root systems (external path, altitude, magnitude, topological index, specific root length, root length, root‐to‐shoot biomass ratio, length of the main axis of the root system and link length). To achieve these objectives, we sampled individuals from eight woody species in a shrubland located in the western Mediterranean Basin. We sampled the adult root systems using manual field excavation with the aid of an air compressor. The results indicate that resprouters have a higher root‐to‐shoot ratio, confirming their higher ability to store water, starch and nutrients and to invest in the belowground biomass. Moreover, this pattern would allow them to explore deeper parts of the soil layers. Seeder species would benefit from a higher specific root length, pointing to increased relative root growth and water uptake rates. This study confirms that seeders and resprouters may differ in nutrient and water uptake ability according to the characteristics of their root system. Species that can both resprout and establish seedlings after fire had different patterns of root system structure; in particular, root:shoot ratio was more similar to resprouters and specific root length was closer to seeders, supporting the distinct functional performance of this type of species.  相似文献   

14.
Deforested tropical areas are often colonized by competitive ferns that inhibit forest succession. In thickets of such a fern (Dicranopteris pectinata), we investigated methods for initiating restoration of tropical montane forest in the Ébano Verde Scientific Reserve (Dominican Republic). In clearings in the thickets, growth and survivorship of 18 common early‐ and late‐successional woody species were tested, with and without fertilizer (poultry litter). Three years after sowing, life history did not affect survivorship, but early‐successional species grew faster than late‐successional species (height increase 153 ± 103 cm vs. 81 ± 67 cm [mean ± 1 SD]). Inga fagifolia, a late‐successional species, and Alchornea latifolia, an early‐successional species, had 160 ± 62 cm mean height increase, and low mortality rates (<4%). In contrast, four late‐successional species (Cyrilla racemiflora, Myrcia deflexa, Prestoea acuminata var. montana, and Mora abbottii), and one early‐successional species, Ocotea leucoxylon, had approximately 39% mortality and height increase of 43 ± 48 cm. Brunellia comocladifolia had high mortality (55%), but averaged 340 ± 201 cm height increase, and was the only species whose growth was improved by fertilization. Fertilization improved survivorship of only one species, Piper aduncum. After three years, soils in the clearings had low pH and available P and did not differ significantly from soils in thickets. However, based on the growth rates and survivorship of sown woody plants, these soils did not appear to be a barrier for restoration. Although a complementary study demonstrated substantial natural regeneration, active planting should be used to increase plant density and diversity, especially where natural regeneration is poor.  相似文献   

15.
Broncano  Maria José  Riba  Miquel  Retana  Javier 《Plant Ecology》1998,138(1):17-26
A two-level multifactor experimental approach was used to compare seed germination and seedling performance of two Mediterranean tree species: the early successional Aleppo pine (Pinus halepensis Mill.) and the late successional holm oak (Quercus ilex L.). In a first experiment germination rate was evaluated under the combined effects of shade, nitrogen availability, and pine or holm oak leaf litter. In a second experiment we tested for the effects of shade, nutrient availability, and litter type on seedling survival, growth and biomass allocation. Holm oak showed higher germination rates under shaded than under unshaded conditions, while Aleppo pine showed no differences between shaded and unshaded conditions. Nitrogen availability and litter type had no significant effect on germination of either species. Both species showed increased RGR, but also higher mortality rates, when grown in an enriched nutrient environment. While Aleppo pine showed no differences in RGR and mortality rate under different shading levels, RGR decreased and mortality increased for holm oak in full light. Increased radiation decreased LAR, SLA and height:diameter ratio, and increased RWR and R/S in both species, although Aleppo pine showed more pronounced changes. Unlike Aleppo pine, holm oak responded to increased nutrient availability by decreasing R/S and increasing LAR. From these results, no seed-seedling conflicts were found in either species, but a trade-off does seem to exist for holm oak between biomass allocation traits deployed in response to increased nutrient availability and radiation. Aleppo pine outperformed holm oak under most environmental conditions tested and showed a wider regeneration niche.  相似文献   

16.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

17.
Though observations on re-colonisation of post-fire sites in the Mediterranean Basin are plentiful, there still is an ongoing debate on the interrelation of fire regimes and species traits related to fire adaptation. Most of the studies found are restricted to particular species or claim to present community attributes. Therefore they often lack information for the evaluation of evolutionary evidence and historical contingency of the local fire regime and other abiotic conditions, which may act as selective pressure for plant regeneration strategies. Indeed, knowledge about the success of regeneration mechanisms and their interrelation with ecological factors is essential for the interpretation of the high spatio-temporal variability found in post-fire species performance. Such knowledge would be necessary to assess the potential of different regeneration mechanisms to cope with ongoing land-use and climate change—a crucial scientific challenge. A summary is given of the knowledge about the limits and potential of plant regeneration mechanisms after fire in the Mediterranean Basin, along with corresponding studies conducted in other parts of the world with similar climatic conditions in order to present the fullest possible picture. Moreover, the positive or negative impacts of particular parameters of a fire regime on different regeneration strategies (post-fire seeders, resprouters, and facultative resprouters) are explained and discussed in the light of published literature. To conclude, reference is made to scientific gaps that need to be filled in order to analyse species resistance and community resilience absorbing possible climate or land use changes.  相似文献   

18.
Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait‐specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia. We show that climatic preferences evolve more rapidly in reseeder lineages than in resprouters and that the optima of these climatic preferences differ between the two strategies. We find that South Africa is more climatically heterogeneous than Australia, independent of the spatial scale we consider. We propose that rapid shifts between states of the fire response trait promote speciation by separating species ecologically, but this only happens when the landscape is sufficiently heterogeneous.  相似文献   

19.
Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long‐term (17 years) nocturnal‐warming (+0.6°C) and drought (?40% rainfall) experiments in an early‐successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter–spring and/or summer, indicating sensitivity to water limitation in this early‐successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long‐term nocturnal‐warming and drought, combined with natural severe droughts, and that the magnitude of the impacts of climate change is also correlated with the successional status of ecosystem. The results thus highlight the necessity for assessing the impacts on ecosystemic functioning and services and developing effective measures for conserving biodiversity.  相似文献   

20.
1. This paper reviews and compares the effects of forest fire and timber harvest on mammalian abundance and diversity, throughout successional time in the boreal forest of North America. 2. Temporal trends in mammal abundance and diversity are generally similar for both harvested and burned stands, with some differences occurring in the initiation stage (0–10 years post disturbance). 3. Small mammals and ungulates are most abundant immediately post disturbance, and decrease as stands age. Lynxes and hares utilize mid-successional stands, but are rare in young and old stands. Bats, arboreal sciurids and mustelids increase in abundance with stand age, and are most abundant in old growth. 4. Substantial gaps in the data exist for carnivores; the response of these species to fire and harvest requires research, as predator–prey interactions can affect mammal community structure in both early and late successional stages. 5. The lack of explicit treatment of in-stand forest structure post disturbance, in the reviewed literature made comparisons difficult. Where forest structure was considered, the presence of downed woody material, live residual trees and standing dead wood were shown to facilitate convergence of mammal communities to a pre-disturbance state for both disturbance types. 6. Mammalian assemblages differed considerably between successional stages, emphasizing the importance of maintaining stands of each successional stage on the landscape when implementing forest management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号