首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene β‐cyclase, β‐carotene hydroxylase, zeaxanthin epoxidase and capsanthin‐capsorubin synthase (CCS) genes, in 94 pepper accessions by single‐molecule real‐time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra‐performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.  相似文献   

3.
Genetic transformation using a micro-cross section (MCS) technique was conducted to improve the carotenoid content in kiwifruit (Actinidia deliciosa cv. Hayward). The introduced carotenoid biosynthetic genes include geranylgeranyl diphosphate synthase (GGPS), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), β-carotene hydroxylase (CHX), and phytoene synthase (PSY). The transformed explants were selected on half-strength MS medium containing 0.001 mg l−1 of 2,4-D and 0.1 mg l−1 of zeatin, either 5 mg l−1 hygromycin or 25 mg l−1 kanamycin, and 500 mg l−1 cefotaxime. The genomic PCR, genomic Southern blot analysis, and RT-PCR were performed to confirm the integration and expression of the transgenes. The transformation efficiencies of either kanamycin- or hygromycin-resistant shoots ranged from 2.9 to 22.1% depending on the target genes, and from 2.9 to 24.2% depending on the reporter genes. The selection efficiencies ranged from 66.7 to 100% for the target genes and from 95.8 to 100% for the reporter genes. Changes of carotenoid content in the several PCR-positive plants were determined by UPLC analysis. As a result, transgenic plants expressing either GGPS or PSY increased about 1.2- to 1.3-fold in lutein or β-carotene content compared to non-transgenic plants. Our results suggest that the Agrobacterium-mediated transformation efficiency of kiwifruit can be greatly increased by this MCS method and that the carotenoid biosynthetic pathway can be modified in kiwifruit by genetic transformation. Our results further suggest that GGPS and PSY genes could be major target genes to increase carotenoid contents in kiwifruit.  相似文献   

4.
Novel expressed and genomic members in sweet orange (Citrus sinensis [L.] Osbeck) carotenoid biosynthesis gene families have been identified through mining of an expressed sequence tags (ESTs) database and hybridization with a bacterial artificial chromosome (BAC) library. These new expressed members included one phytoene synthase (PSY), one phytoene desaturase (PDS), ten zeta-carotene desaturases (ZDS), one lycopene beta-cyclase (LCYB), one lycopene epsilon-cyclase (LCYE), four carotenoid beta-ring hydroxylases (CHYB), and one capsanthin/capsorubin synthase (CCS). Most unigenes with multiple ESTs, including the ones containing the known genes and these new members, were heterozygous, in which putative single nucleotide polymorphisms distinguished two alleles. According to digital gene expression profiling, fruit was the primary tissue where at least one member of each gene family was specifically or highly expressed. Digital expression levels varied among the members and tissues. According to Southern hybridization of the identified BAC clones, genomic members of the families were either clustered in a single BAC contig or distributed in several different contigs. PSY has four members in one contig, PDS two in one, ZDS 12 in three, LCYB 11 in three, LCYE three in two, CHYB eight in one, and CCS 14 in four, respectively. The number of the genomic members in most families tended to be more than that of the expressed members, suggesting that some genomic members may not be expressed or structurally functional. These new carotenoid gene members, along with much first-hand genomic information, can be used further for functional genomics and genetic mapping.  相似文献   

5.
6.
Phytoene desaturase (PDS) is a rate‐limiting enzyme in carotenoid biosynthesis. Algal PDS is inhibited by some herbicides, leading to the bleaching of the cells due to destruction of chl. Specific point mutations in PDS confer resistance to the herbicide norflurazon, suggesting that mutated PDS could be used as a dominant selectable marker for genetic engineering of algae, for which very few selective markers are available. In this study, we report the isolation and characterization of the PDS gene from the astaxanthin‐producing green alga Chlorella zofingiensis Dönz. The open reading frame (ORF) of this PDS gene, interrupted by six introns, encoded a polypeptide of 558 amino acid residues. The deduced protein sequence showed significant homology to phytoene desaturases of algae, cyanobacteria, and higher plants. Expression of the PDS gene in Escherichia coli demonstrated that the enzyme was able to convert phytoene to ζ‐carotene. The PDS gene in Chlorella was shown to be up‐regulated by high light and glucose treatment. With a single amino acid change (L516R), the mutated PDS‐L516R was still active and exhibited ~36‐fold greater resistance to the bleaching herbicide norflurazon than the unaltered enzyme. Thus, the modified PDS gene could be a useful tool for genetic engineering of carotenoid biosynthesis in C. zofingiensis and perhaps also in other algae.  相似文献   

7.
The profile of secondary metabolites in plants reflects the balance of biosynthesis, degradation and storage, including the availability of precursors and products that affect the metabolic equilibrium. We investigated the impact of the precursor–product balance on the carotenoid pathway in the endosperm of intact rice plants because this tissue does not normally accumulate carotenoids, allowing us to control each component of the pathway. We generated transgenic plants expressing the maize phytoene synthase gene (ZmPSY1) and the bacterial phytoene desaturase gene (PaCRTI), which are sufficient to produce β‐carotene in the presence of endogenous lycopene β‐cyclase. We combined this mini‐pathway with the Arabidopsis thaliana genes AtDXS (encoding 1‐deoxy‐D‐xylulose 5‐phosphate synthase, which supplies metabolic precursors) or AtOR (the ORANGE gene, which promotes the formation of a metabolic sink). Analysis of the resulting transgenic plants suggested that the supply of isoprenoid precursors from the MEP pathway is one of the key factors limiting carotenoid accumulation in the endosperm and that the overexpression of AtOR increased the accumulation of carotenoids in part by up‐regulating a series of endogenous carotenogenic genes. The identification of metabolic bottlenecks in the pathway will help to refine strategies for the creation of engineered plants with specific carotenoid profiles.  相似文献   

8.
The cyanobacterium Synechocystis sp. PCC 6803 is a model species commonly employed for biotechnological applications. It is naturally able to accumulate zeaxanthin (Zea) and echinenone (Ech), but not astaxanthin (Asx), which is the highest value carotenoid produced by microalgae, with a wide range of applications in pharmaceutical, cosmetics, food and feed industries. With the aim of finding an alternative and sustainable biological source for the production of Asx and other valuable hydroxylated and ketolated intermediates, the carotenoid biosynthetic pathway of Synechocystis sp. PCC 6803 has been engineered by introducing the 4,4′ β‐carotene oxygenase (CrtW) and 3,3′ β‐carotene hydroxylase (CrtZ) genes from Brevundimonas sp. SD‐212 under the control of a temperature‐inducible promoter. The expression of exogenous CrtZ led to an increased accumulation of Zea at the expense of Ech, while the expression of exogenous CrtW promoted the production of non‐endogenous canthaxanthin and an increase in the Ech content with a concomitant strong reduction of β‐carotene (β‐car). When both Brevundimonas sp. SD‐212 genes were coexpressed, significant amounts of non‐endogenous Asx were obtained accompanied by a strong decrease in β‐car content. Asx accumulation was higher (approximately 50% of total carotenoids) when CrtZ was cloned upstream of CrtW, but still significant (approximately 30%) when the position of genes was inverted. Therefore, the engineered strains constitute a useful tool for investigating the ketocarotenoid biosynthetic pathway in cyanobacteria and an excellent starting point for further optimisation and industrial exploitation of these organisms for the production of added‐value compounds.  相似文献   

9.
Lutein and zeaxanthin cannot be synthesized de novo in humans, and although lutein is abundant in fruit and vegetables, good dietary sources of zeaxanthin are scarce. Certain corn varieties provide adequate amounts because the ratio of endosperm β : ε lycopene cyclase activity favours the β‐carotene/zeaxanthin branch of the carotenoid pathway. We previously described a transgenic corn line expressing the early enzymes in the pathway (including lycopene β‐cyclase) and therefore accumulating extraordinary levels of β‐carotene. Here, we demonstrate that introgressing the transgenic mini‐pathway into wild‐type yellow endosperm varieties gives rise to hybrids in which the β : ε ratio is altered additively. Where the β : ε ratio in the genetic background is high, introgression of the mini‐pathway allows zeaxanthin production at an unprecedented 56 μg/g dry weight. This result shows that metabolic synergy between endogenous and heterologous pathways can be used to enhance the levels of nutritionally important metabolites.  相似文献   

10.
This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt‐resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt‐treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.  相似文献   

11.
Oncidium ‘Gower Ramsey’ (Onc. GR) is a popular cut flower, but its colour is limited to bright yellow. The β‐ring carotene hydroxylase (BCH2) gene is involved in carotenoid biogenesis for pigment formation. However, the role of BCH2 in Onc. GR is poorly understood. Here, we investigated the functions of three BCH2 genes, BCH‐A2, BCH‐B2 and BCH‐C2 isolated from Onc. GR, to analyse their roles in flower colour. RT‐PCR expression profiling suggested that BCH2 was mainly expressed in flowers. The expression of BCH‐B2 remained constant while that of BCH‐A2 gradually decreased during flower development. Using Agrobacterium tumefaciens to introduce BCH2 RNA interference (RNAi), we created transgenic Oncidium plants with down‐regulated BCH expression. In the transgenic plants, flower colour changed from the bright yellow of the wild type to light and white‐yellow. BCH‐A2 and BCH‐B2 expression levels were significantly reduced in the transgenic flower lips, which make up the major portion of the Oncidium flower. Sectional magnification of the flower lip showed that the amount of pigmentation in the papillate cells of the adaxial epidermis was proportional to the intensity of yellow colouration. HPLC analyses of the carotenoid composition of the transgenic flowers suggested major reductions in neoxanthin and violaxanthin. In conclusion, BCH2 expression regulated the accumulation of yellow pigments in the Oncidium flower, and the down‐regulation of BCH‐A2 and BCH‐B2 changed the flower colour from bright yellow to light and white‐yellow.  相似文献   

12.
13.
Column and thin‐layer chromatography revealed the presence of the following carotenoids in thalli of Dirinaria applanata from 13 different sites: α‐carotene, β‐carotene, β‐cryptoxanthin, lutein, 3′‐epilutein, zeaxanthin, antheraxanthin, canthaxanthin, astaxanthin, violaxanthin, mutatoxanthin, neoxanthin, capsochrome, fucoxanthinol, paracentrone and apo‐6′‐lycopenal. In the thalli of all 13 specimens of Dirinaria applanata β‐carotene, lutein, astaxanthin and violaxanthin were found as constant carotenoids. The total content of carotenoids ranged from 21.0 (from Mexico) to 54.9 μg g−1 dry weight (from Antilles).  相似文献   

14.
β, β‐carotene‐9′, 10′‐dioxygenase (BCO2) plays a role in cleaving β‐carotene eccentrically, and may be involved in the control of adipose and milk colour in cattle. The bovine BCO2 gene was sequenced as a potential candidate gene for a beef fat colour QTL on chromosome (BTA) 15. A single nucleotide base change located in exon 3 causes the substitution of a stop codon (encoded by the A allele) for tryptophan80 (encoded by the G allele) (c. 240G>A, p.Trp80stop, referred to herein as SNP W80X). Association analysis showed significant differences in subcutaneous fat colour and beta‐carotene concentration amongst cattle with different BCO2 genotypes. Animals with the BCO2 AA genotype had more yellow beef fat and a higher beta‐carotene concentration in adipose tissues than those with the GA or GG genotype. QTL mapping analysis with the BCO2 SNP W80X fitted as a fixed effect confirmed that this SNP is likely to represent the quantitative trait nucleotide (QTN) for the fat colour‐related traits on BTA 15. Moreover, animals with the AA genotype had yellower milk colour and a higher concentration of beta‐carotene in the milk.  相似文献   

15.
16.
β‐Carotene is overproduced in the alga Dunaliella salina in response to high light intensities. We have studied the effects of a sudden light increase on carotenoid and fatty acid metabolism using a flat panel photobioreactor that was run in turbidostat mode to ensure a constant light regime throughout the experiments. Upon the shift to an increased light intensity, β‐carotene production commenced immediately. The first 4 h after induction were marked by constant intracellular levels of β‐carotene (2.2 g LCV?1), which resulted from identical increases in the production rates of cell volume and β‐carotene. Following this initial phase, β‐carotene productivity continued to increase while the cell volume productivity dropped. As a result, the intracellular β‐carotene concentration increased reaching a maximum of 17 g LCV?1 after 2 days of light stress. Approximately 1 day before that, the maximum β‐carotene productivity of 30 pg cell?1 day?1 (equivalent to 37 mg LRV?1 day?1) was obtained, which was about one order of magnitude larger than the average productivity reported for a commercial β‐carotene production facility, indicating a vast potential for improvement. Furthermore, by studying the light‐induced changes in both β‐carotene and fatty acid metabolism, it appeared that carotenoid overproduction was associated with oil globule formation and a decrease in the degree of fatty acid unsaturation. Our results indicate that cellular β‐carotene accumulation in D. salina correlates with accumulation of specific fatty acid species (C16:0 and C18:1) rather than with total fatty acid content. Biotechnol. Bioeng. 2010;106: 638–648. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Xanthophylls, the pigments responsible for yellow to red coloration, are naturally occurring carotenoid compounds in many colored tissues of plants. These pigments are esterified within the chromoplast; however, little is known about the mechanisms underlying their accumulation in flower organs. In this study, we characterized two allelic tomato (Solanum lycopersicum L.) mutants, pale yellow petal (pyp) 1‐1 and pyp1‐2, that have reduced yellow color intensity in the petals and anthers due to loss‐of‐function mutations. Carotenoid analyses showed that the yellow flower organs of wild‐type tomato contained high levels of xanthophylls that largely consisted of neoxanthin and violaxanthin esterified with myristic and/or palmitic acids. Functional disruption of PYP1 resulted in loss of xanthophyll esters, which was associated with a reduction in the total carotenoid content and disruption of normal chromoplast development. These findings suggest that xanthophyll esterification promotes the sequestration of carotenoids in the chromoplast and that accumulation of these esters is important for normal chromoplast development. Next‐generation sequencing coupled with map‐based positional cloning identified the mutant alleles responsible for the pyp1 phenotype. PYP1 most likely encodes a carotenoid modifying protein that plays a vital role in the production of xanthophyll esters in tomato anthers and petals. Our results provide insight into the molecular mechanism underlying the production of xanthophyll esters in higher plants, thereby shedding light on a longstanding mystery.  相似文献   

18.
Carotenoid biosynthesis is highly conserved and well characterized up to the synthesis of β‐carotene. Conversely, the synthesis of astaxanthin from β‐carotene is less well characterized. Regardless, astaxanthin is a highly sought natural product, due to its various industrial applications and elevated antioxidant capacity. In this article, 12 β‐carotene ketolase and 4 β‐carotene hydroxylase genes, isolated from 5 cyanobacterial species, are investigated for their function, and potential for microbial astaxanthin synthesis. Further, this in vivo comparison identifies and applies the most promising genetic elements within a dual expression vector, which is maintained in Escherichia coli. Here, combined overexpression of individual β‐carotene ketolase and β‐carotene hydroxylase genes, within a β‐carotene accumulating host, enables a 23.5‐fold improvement in total carotenoid yield (1.99 mg g?1), over the parental strain, with >90% astaxanthin. Biotechnol. Bioeng. 2009;103: 944–955. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号