首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA‐regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome‐wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA‐responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA‐induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA‐ and ABA‐affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T‐DNA insertion mutant analysis to affect SA–JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA–JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.  相似文献   

2.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   

3.
Lipoxygenases (LOXs) are enzymes responsible for lipid peroxidation processes during plant defence responses to pathogen infection. Jasmonates are lipid‐derived signals that mediate plant stress responses with chloroplastic LOXs implicated in the biosynthesis of oxylipins like jasmonic acid (JA). Hypersensitive reaction (HR) cell death of cotton to the incompatible race 18 of Xanthomonas campestris pathovar malvacearum (Xcm) is associated with 9S‐lipoxygenase activity and expression of a 9‐LOX GhLOX1. Here, we report the cloning of cotton (Gossypium hirsutum L.) LOX gene GhLOX2. Sequence analysis showed that GhLOX2 is a putative 13‐LOX with a chloroplast‐transit peptide in the amino acid terminus. GhLOX2 was found to be significantly expressed in the first hour of Xcm‐induced HR. Investigation into LOX signalization on cotyledons incubated with methyl‐jasmonate (MeJA) or infiltrated with salicylic acid (SA) or ethylene (ET) revealed that the first two treatments induced GhLOX2 gene expression. Our results show that GhLOX2 gene expression occurred at the stage of the HR prior biochemical events previously highlighted. The role that GhLOX2 may have in the defence strategy of cotton to Xcm is discussed regarding the HR.  相似文献   

4.
Flowers can serve as infection courts for specialized and unspecialized plant pathogens, but little is known about the ability of floral tissues to undergo induced resistance (IR) responses against these pathogens. We studied the expression of IR marker genes in tomato and blueberry flowers treated with the inducers methyl jasmonate (MeJA), benzothiadiazole‐S‐methyl ester (BTH) and 2,6‐dichloroisonicotinic acid (INA). In tomato, spray application of MeJA and BTH (but not INA) to entire plants (leaves, stems and flowers) resulted in a significant (< 0.05) overexpression of Pin2 (5.2‐fold) and PR‐4 (5.6‐fold) in pistil tissues, respectively. A statistically similar expression was obtained in pistils when flowers were protected from direct spray, indicating a systemic response. In blueberry, where information about IR marker genes is limited, PR‐3 and PR‐4 orthologs were first identified and characterized using in silico and wet‐laboratory techniques. In subsequent induction experiments, INA and BTH induced overexpression of PR‐4 in blueberry pistils by 3.2‐ and 1.8‐fold, respectively, when entire plants were treated. In blueberry flowers protected from spray applications, all chemicals applied to vegetative tissues led to significant overexpression of PR‐4 (MeJA: 1.4‐fold, BTH: 2.9‐fold and INA: 1.6‐fold), with BTH also inducing PR‐3 (1.7‐fold). The effect of these responses in protecting flowers was studied by inoculating treated tomato flowers with the necrotroph Botrytis cinerea and blueberry flowers with the hemi‐biotroph Monilinia vaccinii‐corymbosi. In both pathosystems, no significant disease suppression associated with resistance inducer application was observed under the conditions studied. Thus, although IR marker genes were shown to be inducible in floral tissue, the magnitude of this response was insufficient to suppress pathogen ingress.  相似文献   

5.
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence‐related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10‐day‐old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60‐fold increase in JA, a 30‐fold increase in SA and a hypersensitive‐like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10‐day‐old hosts, but both did in 20‐day‐old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid‐insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore‐ and pathogen‐induced responses.  相似文献   

6.
The plant hormone, jasmonic acid (JA), is known to have a critical role in both resistance and susceptibility against bacterial and fungal pathogen attack. However, little is known about the involvement of JA in the interactions between plants and toxigenic necrotrophic fungal pathogens. Using the tomato pathotype of Alternaria alternata (Aa) and its AAL-toxin/tomato interaction as a model system, we demonstrate a possible role for JA in susceptibility of plants against pathogens, which utilize host-specific toxins as virulence effectors. Disease development and in planta growth of the tomato pathotype of Aa were decreased in the def1 mutant, defective in biosynthesis of JA, compared with the wild-type (WT) cultivar. Exogenous methyl jasmonate (MeJA) application restored pathogen disease symptoms to the def1 mutant and led to increased disease in the WT. On the other hand, necrotic cell death was similarly induced by AAL-toxin both on def1 and WT, and MeJA application to the tomatoes did not affect the degree of cell death by the toxin. These results indicate that the JA-dependent signaling pathway is not involved in host basal defense responses against the tomato pathotype of Aa, but rather might affect pathogen acceptability via a toxin-independent manner. Data further suggest that JA has a promotional effect on susceptibility of tomato to toxigenic and necrotrophic pathogens, such that pathogens might utilize the JA signaling pathway for successful infection.  相似文献   

7.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

8.
Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.  相似文献   

9.
10.
11.
In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell‐free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol–plant–pathogen interaction system. Two‐week‐old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell‐free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata‐Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS‐ and CF‐induced resistance was evaluated using JA‐ and SA‐impaired tomato lines. We observed that JA‐deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild‐type (WT) BGS‐treated tomato plants showed a higher JA level and significantly lower disease incidence. SA‐deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF‐treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA‐responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA‐inducible pathogenesis‐related protein 1 acidic (PR1a) gene was up‐regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato.  相似文献   

12.
13.
14.
Foliar spray with BABA led to a significant reduction of lesion development in Brassica carinata caused by Alternaria brassicae. To get better insight into molecular mechanisms underlying priming of defence responses by BABA, expression pattern of BcWRKY genes and marker genes for the SA and JA pathway namely PR‐1 and PDF 1.2 was examined. Q‐RT‐PCR analysis revealed priming of BcWRKY70, BcWRKY11 and BcWRKY53 gene expression in BABA‐pretreated Brassica plants challenged with pathogen. However, the expression of BcWRKY72 and BcWRKY18 remained unchanged. Furthermore, BcWRKY7 gene was found to be upregulated in water‐treated plants in response to pathogen indicating its role in susceptibility. In addition, BABA application potentiated expression of defence genes PR‐1, PDF1.2 and PAL in response to the pathogen. In conclusion, BABA‐primed expression of BcWRKY70, BcWRKY11 and BcWRKY53 genes is strongly correlated with enhanced expression of PR‐1, PDF1.2 and PAL hence suggesting their role in BABA‐induced resistance.  相似文献   

15.
β‐Aminobutyric acid (BABA) pretreatment of Brassica plants protected them against the necrotrophic pathogen Alternaria brassicae. The achieved resistance level was much higher than that seen after salicylic acid (SA) and jasmonic acid (JA) pretreatments. BABA pretreatment to the leaves, 1 day before inoculation, led to an inhibition of the oxidative burst and a decrease in SA levels, but did not influence lipoxygenase activity nor cause callose deposition at the site of inoculation. Expression of two marker genes of the SA and JA pathways, namely PR1 and PDF1.2, was enhanced in response to BABA pretreatment. Our results indicate that BABA‐induced resistance is mediated through an enhanced expression of pathogenesis‐related protein genes, independent of SA and JA accumulation.  相似文献   

16.
Potato is major crop ensuring food security in Europe, and blackleg disease is increasingly causing losses in yield and during storage. Recently, one blackleg pathogen, Dickeya solani has been shown to be spreading in Northern Europe that causes aggressive disease development. Currently, identification of tolerant commercial potato varieties has been unsuccessful; this is confounded by the complicated etiology of the disease and a strong environmental influence on disease development. There is currently a lack of efficient testing systems. Here, we describe a system for quantification of blackleg symptoms on shoots of sterile in vitro potato plants, which saves time and space compared to greenhouse and existing field assays. We found no evidence for differences in infection between the described in vitro‐based screening method and existing greenhouse assays. This system facilitates efficient screening of blackleg disease response of potato plants independent of other microorganisms and variable environmental conditions. We therefore used the in vitro screening method to increase understanding of plant mechanisms involved in blackleg disease development by analysing disease response of hormone‐ related (salicylic and jasmonic acid) transgenic potato plants. We show that both jasmonic (JA) and salicylic (SA) acid pathways regulate tolerance to blackleg disease in potato, a result unlike previous findings in Arabidopsis defence response to necrotrophic bacteria. We confirm this by showing induction of a SA marker, pathogenesis‐related protein 1 (StPR1), and a JA marker, lipoxygenase (StLOX), in Dickeya solani infected in vitro potato plants. We also observed that tubers of transgenic potato plants were more susceptible to soft rot compared to wild type, suggesting a role for SA and JA pathways in general tolerance to Dickeya.  相似文献   

17.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号