首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Plants have evolved diverse secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are released upon herbivore attack or pathogen infection. Recent studies suggest that VOCs can act as signalling molecules in plant defence and induce resistance in distant organs and neighbouring plants. However, knowledge is lacking on the function of VOCs in biotrophic fungal infection on cereal plants.
  • We analysed VOCs emitted by 13 ± 1-day-old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS. We investigated the effect of pure VOC and complex VOC mixtures released from wounded plants on the barley–powdery mildew interaction by pre-exposure in a dynamic headspace connected to a powdery mildew susceptibility assay. Untargeted metabolomics and lipidomics were applied to investigate metabolic changes in sender and receiver barley plants.
  • Green leaf volatiles (GLVs) dominated the volatile profile of wounded barley plants, with (Z)-3-hexenyl acetate (Z3HAC) as the most abundant compound. Barley volatiles emitted after mechanical wounding enhanced resistance in receiver plants towards fungal infection. We found volatile-mediated modifications of the plant–pathogen interaction in a concentration-dependent manner. Pre-exposure with physiologically relevant concentrations of Z3HAC resulted in induced resistance, suggesting that this GLV is a key player in barley anti-pathogen defence.
  • The complex VOC mixture released from wounded barley and Z3HAC induced e.g. accumulation of chlorophyll, linolenic acid and linolenate-conjugated lipids, as well as defence-related secondary metabolites, such as hordatines in receiving plants. Barley VOCs hence induce a complex physiological response and disease resistance in receiver plants.
  相似文献   

2.
Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds which is necessary for avoiding possible damage to non-target plants. Volatile organic compounds (VOCs) emitted by plants likely play an important role in determining which plants attract and are accepted by a prospective arthropod agent. However, current methods to evaluate host plant specificity usually rely on empirical choice and no-choice behavioural experiments, with little knowledge about what chemical or physical attributes are stimulating the insect. We conducted experiments to measure the quantitative and qualitative effects on emission of VOCs caused by simple mechanical damage to leaves of plants known to differ in suitability and attractiveness to a prospective agent. More VOCs were detected from damaged than from undamaged leaves for all three species tested. Discriminant analysis was able to correctly distinguish the taxonomic identity of all plants based on their VOC profiles; however, the VOCs that discriminated species among undamaged leaves were completely different from those that discriminated among damaged leaves. Thus, damaged and undamaged plants present different VOC profiles to insects, which should be considered when conducting host plant specificity experiments. An unacceptable non-target plant, Centaurea cineraria, emitted all except one of the VOCs that were emitted by its preferred host plant, Centaurea solstitialis, indicating the importance of compounds that are repellant in host plant specificity. Centaurea cyanus emitted fewer VOCs than C. solstitialis, which suggests that it lacked some VOCs important for host plant recognition.  相似文献   

3.
To protect themselves from herbivory, plants have evolved an arsenal of physical and chemical defences and release a variety of volatile organic compounds (VOCs). By releasing these VOCs, a signalling plant can both reduce herbivory, sometimes by more than 90%, and also warn neighbouring plants about an attack. The aim of this study was to assess the influence of herbivory and insect extract application on VOC release by damaged/treated and nearby undamaged/untreated maize plants. We confirmed that European corn borer (Ostrinia nubilalis) larvae attack or larvae extract application induced maize VOC release. Greater amounts of (Z)‐3‐hexenal, (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (E)‐2‐hexen‐1‐ol, β‐myrcene, (Z)‐3‐hexen‐1‐yl acetate, 1‐hexyl acetate, (Z)‐ocimene, linalool, benzyl acetate, methyl salicylate, indole, methyl anthranilate, geranyl acetate, β‐caryophyllene, (E)‐β‐farnesene and (Z)‐3‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexen‐1‐yl acetate, (Z)‐ocimene, linalool, indole, methyl anthranilate, geranyl acetate, β‐caryophyllene and (E)‐β‐farnesene were released as a result of biotic stress after insect attack or insect extract application. The amounts of each VOC released were qualitatively and quantitatively distinct and dependent on time after biotic stress exposure. However, for all biotic stresses, significantly lower VOC induction was measured when leaves were damaged/treated for three days, as compared to seven days. Our work also demonstrated that undamaged/untreated neighbouring plants also release significant amounts of VOCs. This suggests that VOC emission by a damaged/treated plant stimulates VOC induction in nearby undamaged/untreated plants. However, the concentrations of all VOCs released by neighbouring undamaged/untreated maize plants were lower than those from damaged/treated plants and were negatively correlated with distance from a damaged/treated plant. Still, significant VOC induction occurred in undamaged/untreated plants even at 3 m distance from a damaged/infected plant. Our work suggests that maize plant protective defence responses (VOC emission) can be induced via application of European corn borer extracts.  相似文献   

4.
5.
cis-Jasmone (CJ) is a natural plant product that activates defence against herbivores in model and crop plants. In this study, we investigated whether CJ could prime defence in maize, Zea mays, against the leafhopper, Cicadulina storeyi, responsible for the transmission of maize streak virus (MSV). Priming occurs when a pre-treatment, in this case CJ, increases the potency and speed of a defence response upon subsequent attack on the plant. Here, we tested insect responses to plant volatile organic compounds (VOCs) using a Y-tube olfactometer bioassay. Our initial experiments showed that, in this system, there was no significant response of the herbivore to CJ itself and no difference in response to VOCs collected from unexposed plants compared to CJ exposed plants, both without insects. VOCs were then collected from C. storeyi-infested maize seedlings with and without CJ pre-treatment. The bioassay revealed a significant preference by this pest for VOCs from infested seedlings without the CJ pre-treatment. A timed series of VOC collections and bioassays showed that the effect was strongest in the first 22 h of insect infestation, i.e. before the insects had themselves induced a change in VOC emission. Chemical analysis showed that treatment of maize seedlings with CJ, followed by exposure to C. storeyi, led to a significant increase in emission of the defensive sesquiterpenes (E)-(1R,9S)-caryophyllene, (E)-α-bergamotene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene, known to act as herbivore repellents. The chemical analysis explains the behavioural effects observed in the olfactometer, as the CJ treatment caused plants to emit a blend of VOCs comprising more of the repellent components in the first 22 h of insect infestation than control plants. The speed and potency of VOC emission was increased by the CJ pre-treatment. This is the first indication that CJ can prime plants for enhanced production of defensive VOCs antagonist towards herbivores.  相似文献   

6.
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant–herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of Cstoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant‐mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of Tofficinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in Tofficinale roots. Furthermore, VOC exposure increases Mmelolontha growth on Tofficinale plants. Exposure of Tofficinale to a major Cstoebe root VOC, the sesquiterpene (E)‐β‐caryophyllene, partially mimics the effect of the full root VOC blend on Mmelolontha growth. Thus, releasing root VOCs can modify plant–herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense.  相似文献   

7.
Jasmonate-mediated regulation of VOC emission has been extensively investigated in higher plants, however, only little is known about VOC production and its regulation in ferns. Here, we investigate whether the emission of VOCs from bracken fern Pteridium aquilinum is triggered by herbivory and if so - whether it is regulated by the octadecanoid signaling pathway. Interestingly, feeding of both generalist (Spodoptera littoralis) and specialist (Strongylogaster multifasciata) herbivores as well as application of singular and continuous mechanical wounding of fronds induced only very low levels of VOC emission. In contrast, treatment with jasmonic acid (JA) led to the emission of a blend of VOCs that was mainly comprised of terpenoids. Likewise, treatment with the JA precursor 12-oxo-phytodienoic acid (OPDA) and α-linolenic acid also induced VOC emission, albeit to a lower intesity than the JA treatment. Accumulation of endogenous JA was low in mechanically wounded fronds and these levels were unaffected by the application of oral secretions from both generalist or specialist herbivores. The emission of terpenoids upon JA treatment could be blocked with fosmidomycin and mevinolin, which are inhibitors of the MEP- and MVA pathways, respectively. These results indicate that similar to higher plants, terpenoid VOCs are produced via these pathways in bracken fern and that these pathways are JA-responsive. However, the very low amounts of terpenoids released after herbivory or mechanical damage are in stark contrast to what is known from higher plants. We speculate that S. multifasciata and S. littoralis feeding apparently did not induce the threshold levels of JA required for activating the MEP and MVA pathways and the subsequent volatile emission in bracken fern.  相似文献   

8.
Upon insect herbivory, plants can release blends of volatile organic compounds (VOCs) that modify herbivore and natural enemy behaviour. We have shown recently that cotton, Gossypium hirsutum, emits a blend of defence VOCs that repels the cotton aphid, Aphis gossypii, upon herbivory by this notorious crop pest, including (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In this study, we investigated changes in the defence VOC profile of G. hirsutum induced by the naturally-occurring plant elicitor cis-jasmone (CJ) and whether these changes modify the behaviour of A. gossypii. In four-arm olfactometer assays, VOCs from untreated plants were significantly attractive (P < 0.05), whilst VOCs from CJ-treated plants were significantly repellent (P < 0.05). The VOCs induced by CJ appeared to comprise (Z)-3-hexenyl acetate, DMNT, methyl salicylate and TMTT. In quantitative VOC collection studies, sustained release of DMNT and TMTT was observed in CJ-treated plants over a period of five days, with levels becoming statistically significantly higher than for control treated plants on the fifth day in most cases. Despite earlier indications, no statistically significant differences were observed in levels of (Z)-3-hexenyl acetate or methyl salicylate between CJ and control treatments on any day. Furthermore, DMNT and TMTT emissions from CJ-treated plants were further enhanced by subsequent addition of A. gossypii. CJ treatment induced statistically significantly higher DMNT and TMTT expression levels as early as day three, when A. gossypii was present. The results in this study show that CJ can induce the production of A. gossypii-induced VOCs from G. hirsutum, with potential for deployment in novel crop protection strategies.  相似文献   

9.
Volatile organic chemical (VOC) emission by plants may serve as an adaptive plant defense by attracting the natural enemies of herbivores. For plant VOC emission to evolve as an adaptive defense, plants must show genetic variability for the trait. To date, such variability has been investigated primarily in agricultural systems, yet relatively little is known about genetic variation in VOCs emitted by natural populations of native plants. Here, we investigate intraspecific variation in constitutive and herbivore-induced plant VOC emission using the native common milkweed plant (Asclepias syriaca) and its monarch caterpillar herbivore (Danaus plexippus) in complementary field and common garden greenhouse experiments. In addition, we used a common garden field experiment to gauge natural enemy attraction to milkweed VOCs induced by monarch damage. We found evidence of genetic variation in the total constitutive and induced concentrations of VOCs and the composition of VOC blends emitted by milkweed plants. However, all milkweed genotypes responded similarly to induction by monarchs in terms of their relative change in VOC concentration and blend. Natural enemies attacked decoy caterpillars more frequently on damaged than on undamaged milkweed, and natural enemy visitation was associated with higher total VOC concentrations and with VOC blend. Thus, we present evidence that induced VOCs emitted by milkweed may function as a defense against herbivores. However, plant genotypes were equally attractive to natural enemies. Although milkweed genotypes diverge phenotypically in their VOC concentrations and blends, they converge into similar phenotypes with regard to magnitude of induction and enemy attraction.  相似文献   

10.
Fusarium infection of maize leaves and/or roots through the soil can stimulate the emission of volatile organic compounds (VOCs). It is also well known that VOC emission from maize plants can repel or attract pests. In our experiments, we studied VOC induction responses of Zea mays L. ssp. mays cv. ‘Prosna’ having Fusarium infection (mix of four species) in leaves or roots, then tested for VOC induction of uninfected neighboring plants, and finally examined wind-tunnel behavioral responses of the adult cereal leaf beetle, Oulema melanopus L. (Chrysomelidae: Coleoptera) behavior to four induced VOCs. In the first part of our experiment, we confirmed that several green leaf volatiles (GLVs; (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexen-1-yl acetate, 1-hexyl acetate), terpenes (β-pinene, β-myrcene, Z-ocimene, linalool, β-caryophyllene), and shikimic acid pathway derivatives (benzyl acetate, methyl salicylate, indole) were positively induced from maize plants infected by Fusarium spp. The quantities of induced VOCs were higher at 7 d than 3 d post-infection and greater when plants were infected with Fusarium on leaves rather than through soil. In the second part of our experiment, uninfected maize plants also showed significantly positive induction of several VOCs when neighboring an infected plant where the degree of induction was negatively related to the distance from the infected plant. In the third part of our experiment, a Y-tube bioassay was used to evaluate upwind orientation of adult cereal leaf beetles to four individual VOCs. Female and male O. melanopus were significantly attracted to the GLVs (Z)-3-hexenal and (Z)-3-hexenyl acetate, and the terpenes linalool and β-caryophyllene. Our results indicate that a pathogen can induce several VOCs in maize plants that also induce VOCs in neighboring uninfected plants, though VOC induction could increase the range at which an insect pest species is attracted to VOC inducing plants.  相似文献   

11.
Pathogen infection can induce plant volatile organic compounds (VOCs). We infected ‘McNeal’ wheat and ‘Harrington’ barley with a Fusarium spp. blend (F. graminearum,F. avenaceum and F. culmorum). Both cereals had the greatest VOC induction 14 days after pathogen innoculation, only slightly lower induction occurred at 7 days, but displayed no induction at 1 days. The induced VOC bouquet for both cereals included six green leaf volatiles (GLVs; e.g. (Z)‐3‐hexenol and (Z)‐3‐hexenyl acetate), four terpenes (linalool, linalool oxide, (Z)‐β‐ocimene and (E)‐β‐caryophyllene) and benzyl acetate. Neighbouring, uninfected individuals of both cereals had significant VOC induction when exposed to an infected, conspecific plant. The temporal pattern and VOC blend were qualitatively similar to infected plants but with quantitative reductions for all induced VOCs. The degree of neighbouring, uninfected plant induction was negatively related to distance from an infected plant. Plant VOC induction in response to pathogen infection potentially influences herbivore attraction or repellency. Y‐tube tests showed that herbivorous female and male Oulema cyanella Voet. (Chrysomelidae: Coleoptera) were significantly attracted to (Z)‐3‐hexenal and (Z)‐3‐hexenyl acetate at 300 and 1500 ng/h but were repelled by both GLVs as well as (Z)‐β‐ocimene and linalool at 7500 ng/h. These O. cyanella behavioural responses were significantly at higher concentrations than those emitted by single plants with pathogen‐induced VOCs, so adults might only be able to respond to a dense group of infected plants. Also, O. cyanella dose responses differ from the previously tested congeneric O. melanopus (cereal leaf beetle), which was attracted to three VOCs induced by Fusarium infection of maize, barley and wheat. Future behavioural tests may indicate whether different herbivore dose responses measured with each VOC singly can help to predict attraction or repellency to injured and uninjured VOC bouquets from different host plant species.  相似文献   

12.
Plants produce specific volatile organic compound (VOC) blends in response to herbivory. Herbivore-induced blends may prime the plant for future attack or attract carnivorous insects; these responses have been considered adaptive for plants. If herbivores differentially modify the VOC emission among individuals within a group of plants they feed upon, then plant responses to herbivores will not only produce specific blends but also variation in odor among individuals, i.e. individuals smell the same, then having a uniform odor. We investigated the VOC emission variation or uniformity among tomato individuals (Solanum lycopersicum L. cv. Castlemart) in response to moderate wounding by (1) nymphs of the psyllid Bactericera cockerelli (Sulc.) (TP); (2) Lepidoptera chewing-feeding larvae of Fall Armyworm (Spodoptera frugiperda Smith) (FAW) and (3) of Cabbage Looper (Trichoplusia ni Hübner) (CL), and (4) mechanical damage (MD). We used a ratio-based analysis to compare the fold-change in concentration from constitutive to induced VOC emission. We also used size and shape analysis to compare the emission of damaged and non-damaged individuals. Aside of finding herbivore-specific blends in line with other studies, we found patterns not described previously. We detected constitutive and induced odor variation among individuals attacked by the same herbivore, with the induced odor uniformity depending on the herbivore identity. We also showed that the fold-change of VOCs from constitutive to induced state differed among individuals independently of the uniformity of the blends before herbivore attack. We discuss our findings in the context of the ecological roles of VOCs in plant-plant and plant-carnivore insects’ interactions.  相似文献   

13.
To test the effect of forecasted drought and warming conditions for the next decades by GCM and ecophysiological models on foliar concentrations of volatile organic compounds (VOCs) and especially of volatile terpenes, we studied four typical Mediterranean woody plants (Pinus halepensis L., Pistacia lentiscus L., Rosmarinus officinalis L. and Globularia alypum L.) under a field experimental drought and warming generated using automatically sliding curtains. Terpenes were detected in the four studied species (R. officinalis L., P halepensis L., Pistacia lentiscus L. and G. alypum L.). In general, maximum concentrations of terpenes were found in the coldest periods and minimum concentrations in the summer. Their concentrations ranged between 0.003 mg g?1 DM (eugenol) in G. alypum under drought conditions and 37 mg g?1 DM in R. officinalis under control conditions. Main volatile terpenes found in all studied species except in G. alypum were α‐pinene, camphene, β‐pinene, β‐phellandrene and caryophyllene. In general, VOC leaf concentrations increased when soil moisture increased and decreased when air temperature increased. However, contrasting not consistent responses to the drought and warming treatments were found among species, seasons and years. For example, in P. halepensis, the concentrations decreased in response to drought in winter and instead increased in summer. Contrarily, drought decreased concentrations in summer and increased them in winter in Pistacia lentiscus. In any case, the data on seasonal VOC concentration in Mediterranean woody species provided here will add new knowledge of seasonal variation in essential oil contents of these species. These data might help in the study of flammability of Mediterranean ecosystems and in improving prediction algorithms, inventories and modelling of monoterpene emissions in response to climate change, which mostly do not consider the changes in concentration under drought stress. However, the lack of general and consistent response patterns to increasing drought and warming among species, seasons and years found here makes this task difficult.  相似文献   

14.
Extensive communication occurs between plants and microorganisms during different stages of plant development in which signaling molecules from the two partners play an important role. Volatile organic compounds (VOCs) emission by certain plant-growth promoting rhizobacteria (PGPR) has been found to be involved in plant growth. However, little is known about the role of bacterial VOCs in plant developmental processes. In this work, we investigated the effects of inoculation with twelve bacterial strains isolated from the rhizosphere of lemon plants (Citrus aurantifolia) on growth and development of Arabidopsis thaliana seedlings. Several bacterial strains showed a plant growth promoting effect stimulating biomass production, which was related to differential modulation of root-system architecture. The isolates L263, L266, and L272a stimulated primary root growth and lateral root development, while L254, L265a and L265b did not significantly alter primary root growth but strongly promoted lateral root formation. VOC emission analysis by SPME-GC-MS identified aldehydes, ketones and alcohols as the most abundant compounds common to most rhizobacteria. Other VOCs, including 1-octen-3-ol and butyrolactone were strain specific. Characterization of L254, L266 and L272a bacterial isolates by 16S rDNA analysis revealed the identity of these strains as Bacillus cereus, Bacillus simplex and Bacillus sp, respectively. Taken together, our data suggest that rhizospheric bacterial strains can modulate both plant growth promotion and root-system architecture by differential VOC emission.  相似文献   

15.
The models of Lande and Schemske predict that among species in which the selfing rate is largely under genetic control and not subject to tremendous environmental variation, the distribution of selfing rates should be bimodal. When this prediction was tested empirically using data from the literature for species of angiosperms and gymnosperms, the distribution of outcrossing rates for all species was clearly bimodal. To provide another empirical test of the prediction, we analyzed mating-system data for 20 species of Pteridophyta (ferns). Homosporous ferns and their allies are unique among vascular plants because three types of mating are possible: intragametophytic selfing (selfing of an individual gametophyte); intergametophytic selfing (analogous to selfing in seed plants); and intergametophytic crossing (analogous to outcrossing in seed plants). The distribution of intragametophytic selfing rates among species of homosporous ferns is clearly uneven. Most species of homosporous ferns would be classified as extreme outcrossers. In contrast, a few species are nearly exclusively inbreeding. In only a few populations of Dryopteris expansa and Hemionitis palmata and a single population of Blechnum spicant do we see convincing evidence of a mixed mating system. The uneven distribution of selfing rates we observed for homosporous ferns, coupled with a corresponding bimodality of the magnitude of genetic load, strongly supports the model.  相似文献   

16.
Tree stems have been identified as sources of volatile organic compounds (VOCs) that play important roles in tree defence and atmospheric chemistry. Yet, we lack understanding on the magnitude and environmental drivers of stem VOC emissions in various forest ecosystems. Due to the increasing importance of extreme drought, we studied drought effects on the VOC emissions from mature Scots pine (Pinus sylvestris L.) stems. We measured monoterpenes, acetone, acetaldehyde and methanol emissions with custom-made stem chambers, online PTR-MS and adsorbent sampling in a drought-prone forest over the hot-dry summer of 2018 and compared the emission rates and dynamics between trees in naturally dry conditions and under long-term irrigation (drought release). The pine stems were significant monoterpene sources. The stem monoterpene emissions potentially originated from resin, based on their similar monoterpene spectra. The emission dynamics of all VOCs followed temperature at a daily scale, but monoterpene and acetaldehyde emission rates decreased nonlinearly with drought over the summer. Despite the dry conditions, large peaks of monoterpene, acetaldehyde and acetone emissions occurred in late summer potentially due to abiotic or biotic stressors. Our results highlight the potential importance of stem emissions in the ecosystem VOC budget, encouraging further studies in diverse environments.  相似文献   

17.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.  相似文献   

18.
Tomato plants release volatile organic compounds (VOCs) following insect or mechanical damage. In this study, the constitutive and wound-induced emission levels of VOCs in suppressor of prosystemin-mediated responses2 (spr2) mutant plants, compromised in linolenic acid (LA) and jasmonic acid (JA) synthesis, and in 35S::prosystemin (35S::prosys) plants, having upregulated direct defence responses, were compared. The spr2 mutants produced constitutively lower levels of VOCs, which were nonetheless increased in response to (a)biotic damage, although at lower levels than wild-type (Wt) and 35S::prosys plants. No significant differences in VOC emissions were detected between the latter two genotypes, thereby suggesting that systemin does not regulate indirect defence responses, whereas differences in fatty acid composition in spr2 plants led to the predominant emission of saturated C6 volatiles in response to wounding. The expression of 1-deoxy-D-xylulose 5-phosphate synthase (DXS2), a key gene involved in VOC synthesis in the chloroplast, was only upregulated in Manduca sexta L.-damaged Wt and 35S::prosys plants. However, its expression was restored in spr2 plants by exogenous LA or JA, suggesting that abated VOC emissions in spr2 plants are correlated with lowered DXS2 expression. Bioassays with two different insects showed that adult females significantly preferred spr2 plants, indicating that lowered levels of VOCs in tomato influence plant selection by insects during oviposition.  相似文献   

19.
Interactions between the root‐knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes were examined when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We tested the hypothesis that, defence‐recessive genotypes tend to allocate ‘extra’ carbon (relative to nitrogen) to growth under elevated CO2, whereas defence‐dominated genotypes allocate extra carbon to defence, and thereby increases the defence against nematodes. For all three genotypes, elevated CO2 increased height, biomass, and root and leaf total non‐structural carbohydrates (TNC):N ratio, and decreased amino acids and proteins in leaves. The activity of anti‐oxidant enzymes (superoxide dismutase and catalase) was enhanced by nematode infection in defence‐recessive genotypes. Furthermore, elevated CO2 and nematode infection did not qualitatively change the volatile organic compounds (VOC) emitted from plants. Elevated CO2 increased the VOC emission rate only for defence‐dominated genotypes that were not infected with nematodes. Elevated CO2 increased the number of nematode‐induced galls on defence‐dominated genotypes but not on wild‐types or defence‐recessive genotypes roots. Our results suggest that CO2 enrichment may not only increase plant C : N ratio but can disrupt the allocation of plant resources between growth and defence in some genetically modified plants and thereby reduce their resistance to nematodes.  相似文献   

20.
Relatively little information is available on mating systems and interpopulational gene flow in species of homosporous pteridophytes. Because of the proximity of antheridia and archegonia on the same thallus, it has long been maintained that intragametophytic selling is the predominant mode of reproduction in natural populations of homosporous ferns and other homosporous plants. Furthermore, quantitative estimates of interpopulational gene flow via spore dispersal are lacking. In this paper, we examine five species of homosporous ferns (Botrychium virginianum, Polystichum munitum, P. imbricans, Blechnum spicant, and Dryopteris expansa) and present estimates of 1) rates of intragametophytic selling, 2) levels of interpopulational gene flow, and 3) interpopulational genetic differentiation (FST). Our data demonstrate that mating systems vary among species of ferns, just as they do among species of seed plants. The data also suggest that levels of interpopulational gene flow are generally high. The FST values indicate little genetic divergence among populations for all species except Dryopteris expansa, which exhibits significant levels of interpopulational genetic differentiation. Patterns of genetic diversity in the five species examined are related to the mating system and rate of interpopulational gene flow in each species. The FST values for all species except Botrychium virginianum are in close agreement with those predicted for an island model of population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号