首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The southwestern Iberian Peninsula is an important biogeographic region, showing high biodiversity levels and hosting several putative glacial refugia for European flora. Here, we study the genetic diversity and structure of the Mediterranean, thermophilous plant Cheirolophus sempervirens (Asteraceae) across its whole distribution range in SW Iberia, as a tool to disentangle some of the general biogeographic patterns shaping this southern refugia hotspot. Null genetic diversity was observed in the cpDNA sequencing screening. Nonetheless, AFLP data revealed high levels of among-population genetic differentiation correlated to their geographic location. Our results suggest longer species persistence in southern Iberian refugia during glacial periods and subsequent founder effects northwards due to colonizations in warmer stages (i.e., the southern richness to northern purity pattern). Additionally, our phylogeographic analyses indicate the presence of two separate genetic lineages within Ch. sempervirens, supporting the hypothesis of multiple minor refugia for SW Iberia in agreement with the refugia within refugia model.  相似文献   

2.
3.
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent‐wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear‐edge populations in the Mediterranean region more vulnerable to extinction due to climate change.  相似文献   

4.
Several studies have reported glacial refugia and migration pathways for different pine species in the Iberian Peninsula, all of them based on a single‐species approach. In this paper, chloroplast microsatellites (cpSSRs) are used to compare population genetic structure and diversity estimates for interspecific pairs of populations located along a cline from southwestern (latitude 36°32′ N, longitude 5°17′ W) to northeastern Spain (latitude 42°14′ N, longitude 2°47′ E) in two widely distributed Mediterranean pines, Pinus halepensis Mill. and Pinus pinaster Ait. Some cpSSRs were shared between species, facilitating comparison of levels of gene diversity at the species level and inferences about within and among species differentiation. P. pinaster showed a much higher number of variants (29) and haplotypes (69) than P. halepensis (20 and 21, respectively). Moreover, genetic diversity estimates for interspecific pairs of populations along the cline were negatively correlated. Three main causes may explain the differences between species in the present‐day distribution of genetic diversity: (1) the distribution of genetic variability before the Quaternary glaciations, with an earlier presence of P. pinaster in the Iberian Peninsula and a late spread of P. halepensis from eastern and central Europe, (2) the location of the Holocene glacial refugia and the migration pathways from these refugia to the present‐day range (from northeast to southwest in P. halepensis and from southwest to northeast and northwest in P. pinaster) and (3) the interactions between species during the postglacial spread.  相似文献   

5.
This study investigated the phylogeographic structure of Cistus ladanifer, in order to locate its Quaternary refugia, reconstruct its recolonisation patterns and assess the role of geographical features (mountain ranges, rivers and the Strait of Gibraltar) as barriers to its seed flow and expansion through the Western Mediterranean. Thirty-eight populations were screened for length variation of polymorphic chloroplast simple sequence repeats (cpSSRs). Statistical analyses included estimation of haplotypic diversity, hierarchical analysis of molecular variation (amova) and fixation indices. Mantel tests, SAMOVA and BARRIER analyses were applied to evaluate the geographical partitioning of genetic diversity across the entire species range. Pollen data from bibliography were used to complement molecular inferences. Chlorotype diversity within populations was similar throughout the natural range of C. ladanifer (mean haplotypic diversity=0.32). High differentiation among populations was estimated (G(ST)=0.60). Our data suggest that the barriers of the Strait of Gibraltar and the Betic ranges may have favoured the divergence during glacial periods of four different lineages of populations inferred with SAMOVA. The main northward colonisation of in the Iberian Peninsula occurred from refugia in southwest Iberia. This process may have been influenced by human activities (forest clearance, livestock grazing and even commerce) in the Iberian Peninsula. In contrast, populations in the Betic area have conserved a specific haplotype.  相似文献   

6.
Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration–drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short‐range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation‐by‐distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human‐mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries.  相似文献   

7.
In Europe, southern peninsulas served as major refugia during Pleistocene cold periods. However, growing evidence has revealed complex patterns of glacial survival within these southern regions, with multiple glacial refugia within each larger refugial area. We investigated the extent to which patterns of endemism and phylogeographic are concordant across animal species in the Iberian Peninsula, one of the most important unglaciated areas in Europe during the Pleistocene, can be explained in terms of climatic stability. We found that historical climatic stability (notably climate velocity measures integrating macroclimatic shifts with local spatial topoclimate gradients) was often among the most important predictors of endemic species richness for different taxonomic groups using models that also incorporated measures of modern climate. Furthermore, for some taxonomic groups, climatic stability was also correlated with patterns of spatial concordance in interpopulation genetic divergence across multiple taxa, and private haplotypes were more frequently found in relatively stable areas. Overall, our results suggest that both endemism patterns and cross‐taxa concordant phylogeographic patterns across the Iberian Peninsula to some extent are linked to spatial variation in Late Quaternary climate stability, in agreement with the proposed ‘refugia‐within‐refugia’ scenario. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 13–28.  相似文献   

8.
Glacial refugia protected and promoted biodiversity during the Pleistocene, not only at a broader scale, but also for many endemics that contracted and expanded their ranges within refugial areas. Understanding the evolutionary history of refugial endemics is especially important in the case of endangered species to recognize the origins of their genetic structure and thus produce better informed conservation practices. The Iberian Peninsula is an important European glacial refugium, rich in endemics of conservation concern, including small mammals, such as the Cabrera vole (Microtus cabrerae). This near‐threatened rodent is characterized by an unusual suite of genetic, life history and ecological traits, being restricted to isolated geographic nuclei in fast‐disappearing Mediterranean subhumid herbaceous habitats. To reconstruct the evolutionary history of the Cabrera vole, we studied sequence variation at mitochondrial, autosomal and sex‐linked loci, using invasive and noninvasive samples. Despite low overall mitochondrial and nuclear nucleotide diversities, we observed two main well‐supported mitochondrial lineages, west and east. Phylogeographic modelling in the context of the Cabrera vole's detailed fossil record supports a demographic scenario of isolation of two populations during the Last Glacial Maximum from a single focus in the southern part of the Iberian Peninsula. In addition, our data suggest subsequent divergence within the east, and secondary contact and introgression of the expanding western population, during the late Holocene. This work emphasizes that refugial endemics may have a phylogeographic history as rich as that of more widespread species, and conservation of such endemics includes the preservation of that genetic legacy.  相似文献   

9.
Many studies have addressed the latitudinal gradients in intraspecific genetic diversity of European taxa generated during postglacial range expansion from southern refugia. Although Asia Minor is known to be a centre of diversity for many taxa, relatively few studies have considered its potential role as a Pleistocene refugium or a potential source for more ancient westward range expansion into Europe. Here we address these issues for an oak gallwasp, Andricus quercustozae (Hymenoptera: Cynipidae), whose distribution extends from Morocco along the northern coast of the Mediterranean through Turkey to Iran. We use sequence data for a fragment of the mitochondrial gene cytochrome b and allele frequency data for 12 polymorphic allozyme loci to answer the following questions: (1) which regions represent current centres of genetic diversity for A. quercustozae? Do eastern populations represent one refuge or several discrete glacial refugia? (2) Can we infer the timescale and sequence of the colonization processes linking current centres of diversity? Our results suggest that A. quercustozae was present in five distinct refugia (Iberia, Italy, the Balkans, southwestern Turkey and northeastern Turkey) with recent genetic exchange between Italy and Hungary. Genetic diversity is greatest in the Turkish refugia, suggesting that European populations are either (a) derived from Asia Minor, or (b) subject to more frequent population bottlenecks. Although Iberian populations show the lowest diversity for putatively selectively neutral markers, they have colonized a new oak host and represent a genetically and biologically discrete entity within the species.  相似文献   

10.
Although the phylogeography of European mammals has been extensively investigated since the 1990s, many studies were limited in terms of sampling distribution, the number of molecular markers used and the analytical techniques employed, frequently leading to incomplete postglacial recolonisation scenarios. The broad-scale genetic structure of the European badger (Meles meles) is of interest as it may result from historic restriction to glacial refugia and/or recent anthropogenic impact. However, previous studies were based mostly on samples from western Europe, making it difficult to draw robust conclusions about the location of refugia, patterns of postglacial expansion and recent demography. In the present study, continent-wide sampling and analyses with multiple markers provided evidence for two glacial refugia (Iberia and southeast Europe) that contributed to the genetic variation observed in badgers in Europe today. Approximate Bayesian computation provided support for a colonisation of Scandinavia from both Iberian and southeastern refugia. In the whole of Europe, we observed a decline in genetic diversity with increasing latitude, suggesting that the reduced diversity in the peripheral populations resulted from a postglacial expansion processes. Although MSVAR v.1.3 also provided evidence for recent genetic bottlenecks in some of these peripheral populations, the simulations performed to estimate the method''s power to correctly infer the past demography of our empirical populations suggested that the timing and severity of bottlenecks could not be established with certainty. We urge caution against trying to relate demographic declines inferred using MSVAR with particular historic or climatological events.  相似文献   

11.
Pleistocene glaciations often resulted in differentiation of taxa in southern European peninsulas, producing the high levels of endemism characteristic of these regions (e.g. the Iberian Peninsula). Despite their small ranges, endemic species often exhibit high levels of intraspecific differentiation as a result of a complex evolutionary history dominated by successive cycles of fragmentation, expansion and subsequent admixture of populations. Most evidence so far has come from the study of species with an Atlantic distribution in northwestern Iberia, and taxa restricted to Mediterranean‐type habitats remain poorly studied. The Iberian Midwife toad (Alytes cisternasii) is a morphologically conserved species endemic to southwestern and central Iberia and a typical inhabitant of Mediterranean habitats. Applying highly variable genetic markers from both mitochondrial and nuclear genomes to samples collected across the species’ range, we found evidence of high population subdivision within A. cisternasii. Mitochondrial haplotypes and microsatellites show geographically concordant patterns of genetic diversity, suggesting population fragmentation into several refugia during Pleistocene glaciations followed by subsequent events of geographical and demographic expansions with secondary contact. In addition, the absence of variation at the nuclear β‐fibint7 and Ppp3caint4 gene fragments suggests that populations of A. cisternasii have been recurrently affected by episodes of extinction and recolonization, and that documented patterns of population subdivision are the outcome of recent and multiple refugia. We discuss the evolutionary history of the species with particular interest in the increasing relevance of Mediterranean refugia for the survival of genetically differentiated populations during the Pleistocene glaciations as revealed by studies in co‐distributed taxa.  相似文献   

12.
Antarctica is isolated, surrounded by the Southern Ocean and has experienced extreme environmental conditions for millions of years, including during recent Pleistocene glacial maxima. How Antarctic terrestrial species might have survived these glaciations has been a topic of intense interest, yet many questions remain unanswered, particularly for Antarctica's invertebrate fauna. We examine whether genetic data from a widespread group of terrestrial invertebrates, springtails (Collembola, Isotomidae) of the genus Cryptopygus, show evidence for long‐term survival in glacial refugia along the Antarctic Peninsula. We use genome‐wide SNP analyses (via genotyping‐by‐sequencing, GBS) and mitochondrial data to examine population diversity and differentiation across more than 20 sites spanning >950 km on the Peninsula, and from islands both close to the Peninsula and up to ~1,900 km away. Population structure analysis indicates the presence of strong local clusters of diversity, and we infer that patterns represent a complex interplay of isolation in local refugia coupled with occasional successful long‐distance dispersal events. We identified wind and degree days as significant environmental drivers of genetic diversity, with windier and warmer sites hosting higher diversity. Thus, we infer that refugial areas along the Antarctic Peninsula have allowed populations of indigenous springtails to survive in situ throughout glacial periods. Despite the difficulties of dispersal in cold, desiccating conditions, Cryptopygus springtails on the Peninsula appear to have achieved multiple long‐distance colonization events, most likely through wind‐related dispersal events.  相似文献   

13.
The glacial–interglacial cycles have caused severe range modifications of species' distributions. In Europe, thermophilic species had to retreat into geographically distinct southern refugia during glaciations. This process produced strong genetic imprints, which are still detectable by the present pattern of genetic differentiation and the distribution of regional diversity. To reveal the biogeographical imprints in the western Mediterranean, we analysed 26 populations of the butterfly Maniola jurtina spread over large areas of its European and North African distribution range. The samples were analysed using allozyme electrophoresis. We detected three genetic groups, divided into Western Europe, Central/Eastern Europe, and Italy with the Maghreb. The North African samples randomly cluster within the Italian samples. Even the population sampled in Morocco is genetically closely related to these samples and not to the geographically neighbouring Iberian ones. Parameters of genetic diversity showed similar values over the whole study area. The observed genetic pattern reflects possible glacial refugia in Europe located in the Iberian Peninsula and the Balkans. For North Africa and Italy, our data reveal a colonization of Africa originating from Italy.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 693–703.  相似文献   

14.
Past glaciation events have played a major role in shaping the genetic diversity and distribution of wild sheep in North America. The advancement of glaciers can isolate populations in ice‐free refugia, where they can survive until the recession of ice sheets. The major Beringian refugium is thought to have held thinhorn sheep (Ovis dalli) populations during times of glacial advance. While isolation in the major refugium can account for much of the genetic and morphological diversity seen in extant thinhorn sheep populations, mounting evidence suggests the persistence of populations in smaller minor refugia. We investigated the refugial origins of thinhorn sheep using ~10 000 SNPs obtained via a cross‐species application of the domestic sheep ovine HD BeadChip to genotype 52 thinhorn sheep and five bighorn sheep (O. canadensis) samples. Phylogenetic inference revealed a distinct lineage of thinhorn sheep inhabiting British Columbia, which is consistent with the survival of a group of thinhorn sheep in a minor refugium separate from the Beringian refugium. Isolation in separate glacial refugia probably mediated the evolution of the two thinhorn sheep subspecies, the white Dall's sheep (O. d. dalli), which persisted in Beringia, and the dark Stone's sheep (O. d. stonei), which utilized the minor refugium. We also found the first genetic evidence for admixture between sheep from different glacial refugia in south‐central Yukon as a consequence of post glacial expansion and recolonization. These results show that glaciation events can have a major role in the evolution of species inhabiting previously glaciated habitats and the need to look beyond established refugia when examining the evolutionary history of such species.  相似文献   

15.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

16.
Documenting and preserving the genetic diversity of populations, which conditions their long‐term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late‐Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia (‘refugia within refugia’) and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies.  相似文献   

17.
Aim To understand the impact of glacial refugia and migration pathways on the modern genetic diversity of Pinus sylvestris. Location The study was carried out throughout Europe. Methods An extended set of data of pollen and macrofossil remains was used to locate the glacial refugia and reconstruct the migrating routes of P. sylvestris throughout Europe. A vegetation model was used to simulate the extent of the potential refugia during the last glacial period. At the same time a genetic survey was carried out on this species. Results The simulated distribution of P. sylvestris during the last glacial period is coherent with the observed fossil data, which showed a patchy distribution of the refugia between c. 40° N and 50° N. Several migrational fronts were detected within the Iberian and the Italian peninsulas, and outside the Hungarian plain and around the Alps. The modern mitochondrial DNA depicted three different haplotypes for P. sylvestris. Two distinct haplotypes were restricted to northern Spain and Italy, and the third haplotype dominated most of the present‐day remaining distribution range of P. sylvestris in Europe. Main conclusions During the last glacial period P. sylvestris was constrained under severe climatic conditions to survive in scattered and restricted refugial areas. Combining palaeoenvironmental data, vegetation modelling and the genetic data, we have shown that the long‐term isolation in the glacial refugia and the migrational process during the Holocene have played a major role in shaping the modern genetic diversity of P. sylvestris in Europe.  相似文献   

18.
The importance of the Mediterranean Basin as a long-term reservoir of biological diversity has been widely recognized, although much less effort has been devoted to understanding processes that allow species to persist in this area. Ramonda myconi (Gesneriaceae) is a Tertiary relict plant species restricted to the NE Iberian Peninsula. We used RAPD and chloroplast markers to assess the patterns of genetic structure in eight mountain regions covering almost the full species range, to identify the main historical processes that have shaped its current distribution and to infer the number and location of putative glacial refugia. While no cpDNA variation was detected, the species had relatively high levels of RAPD variation. Maximum levels of diversity were found within populations (71%), but there was also a significant differentiation between geographical regions (20%) and among populations within regions (9%). A spatial AMOVA identified three main groups of populations, corresponding to previously recognized centers of endemism and species richness. In addition, we found a marked geographical pattern of decreasing genetic diversity and increasing population differentiation from west to east. Our results support a complex phylogeographic scenario in the Iberian Peninsula of "refugia-within-refugia" and suggest that the higher diversity observed in western regions might be associated with prolonged and more stable climatic conditions in this area during the Quaternary.  相似文献   

19.
Aim The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post‐glacial history of this species during the Holocene. Location Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier’s algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species’ extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north–south along Honshu. Given that this tree species is cold‐adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher‐elevation swamps during warm post‐glacial periods, leading to a reduction of effective population sizes and rare allelic richness.  相似文献   

20.
Background: Range expansion often results in colonisation bottlenecks that should both deplete genetic diversity and increase genetic differentiation towards the margins of a species' geographic distribution.

Aims: We tested whether genetic differentiation increased among populations of the annual plant Mercurialis annua after its colonisation of the Iberian Peninsula from Morocco. Previous work showed that this colonisation resulted in a decrease of phenotypic and genetic diversity from the core in North Africa towards the distribution margins of M. annua in north-eastern and north-western Spain.

Methods: Seeds were sampled from 20 populations located across the hexaploid range of M. annua. Patterns of phenotypic and genetic differentiation among experimentally grown populations were analysed and compared between the Iberian Peninsula and North Africa.

Results: The level of phenotypic and genetic differentiation among populations in the expanded range of the Iberian Peninsula was similar to that in the core range in North Africa.

Conclusions: Our findings imply that the observed effects of range expansion on genetic differentiation may be independent of the effects on genetic diversity. They point to the importance of taking both historic and contemporary processes of migration into account when predicting the results of range expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号