首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hypophysectomized rats were treated for 6 days with 200 mug per day of either human chorionic somatomammotropin, human pituitary growth hormone, plasmin-modified human pituitary growth hormone, or ovine prolactin. All hormone preparations except ovine prolactin enhanced the ability of the pancreases of hypophysectomized rats to secrete insulin in the isolated pancreas perfusion system.  相似文献   

3.
4.
5.
6.
7.
The available evidence suggests that about two-thirds of the insulin response to an oral glucose load is due to the potentiating effect of gut-derived incretin hormones. The strongest candidates for the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). In patients with type 2 diabetes, however, the incretin effect is lost or greatly impaired. It is hypothesized that this loss explains an important part of the impaired insulin secretion in patients. Further analysis of the incretin effects in patients has revealed that the secretion of GIP is near normal, whereas the secretion of GLP-1 is decreased. On the other hand, the insulintropic effect of GLP-1 is preserved, whereas the effect of GIP is greatly reduced, mainly because of a complete loss of the normal GIP-induced potentiation of second-phase insulin secretion. These two features, therefore, explain the incretin defect of type 2 diabetes. Strong support for the hypothesis that the defect plays an important role in the insulin deficiency of patients is provided by the finding that administration of excess GLP-1 to patients may completely restore the glucose-induced insulin secretion as well as the beta-cells' sensitivity to glucose. Because of this, analogs of GLP-1 or GLP-1 receptor activations are currently being developed for diabetes treatment, so far with very promising results.  相似文献   

8.
9.
10.
Glucose tolerance progressively declines with age, and there is a high prevalence of type 2 diabetes and postchallenge hyperglycemia in the older population. Age-related glucose intolerance in humans is often accompanied by insulin resistance, but circulating insulin levels are similar to those of younger people. Under some conditions of hyperglycemic challenge, insulin levels are lower in older people, suggesting beta-cell dysfunction. When insulin sensitivity is controlled for, insulin secretory defects have been consistently demonstrated in aging humans. In addition, beta-cell sensitivity to incretin hormones may be decreased with advancing age. Impaired beta-cell compensation to age-related insulin resistance may predispose older people to develop postchallenge hyperglycemia and type 2 diabetes. An improved understanding of the metabolic alterations associated with aging is essential for the development of preventive and therapeutic interventions in this population at high risk for glucose intolerance.  相似文献   

11.
12.
13.
Insulinotropic gut-derived hormones (incretins) play a significant role in the regulation of glucose homeostasis in healthy subjects and are responsible for 50-70% of insulin response to a meal. The main mediators of the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). However, in patients with type 2 diabetes the effect of incretins action is to a large extent impaired, which seems to explain disturbed secretional activity of beta cells in pancreatic islets. Detailed analysis of incretin defect proved that GIP secretion remains within physiological limits, whereas GLP-1 secretion is significantly decreased. Nevertheless, GLP-1 insulinotropic effect is preserved and GIP effect is significantly impaired. In consequence, substitutional GLP-1 administration aiming at the reduction of its deficiency, seems to be logical therapeutic management, because despite a physiologically retained quantity response from GIP, resistance to this peptide is frequently found. Therefore, particularly promising are the results of clinical studies with the use of GLP-1 analogues , GLP-1 receptors activation, as well as the inhibitors of dipeptidyl peptidase-IV (DPP IV), the enzyme responsible for incretin proteolysis, which restores the proper function of the intestinal-pancreatic axis in subjects with type 2 diabetes and creates new possibilities of a glycaemia reducing therapy and improvement in quality of life in this group of patients.  相似文献   

14.
15.
16.
17.
18.
Regulation of leptin gene expression and secretion by steroid hormones.   总被引:4,自引:0,他引:4  
Previous work has shown that 17 beta-estradiol is the primary ovarian signal regulating body weight and adiposity, although its mechanisms of action remain unclear. We hypothesized that 17 beta-estradiol could enhance leptin levels as a mechanism of its anorectic effects. Administration of 5 microg 17 beta-estradiol subcutaneously (s.c.) for 2 days significantly elevated leptin mRNA levels in adipose tissue as compared to vehicle controls (P < 0.003). A time-course administration of estrogen showed increased mRNA levels in adipose tissue between 6 and 12 h after estrogen injection as compared to vehicle controls (P < 0.03). Corresponding to the increased leptin mRNA levels at 6 and 12 h, elevated plasma leptin levels were observed at 12 h after estrogen administration as compared to controls (P < 0.05). Administration of progesterone (1 mg/rat) after estradiol injection did not enhance the elevated leptin mRNA levels in adipose tissue. Serum leptin levels from cycling rats did not differ significantly between metestrous and proestrous animals. In conclusion, the present studies demonstrate that 17 beta-estradiol can regulate leptin gene expression and secretion in the female rat, thus providing a better understanding of the possible anorectic effect of estrogens.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号