首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Live, attenuated strains of many bacteria that synthesize and secrete foreign antigens are being developed as vaccines for a number of infectious diseases and cancer. Bacterial-based vaccines provide a number of advantages over other antigen delivery strategies including low cost of production, the absence of animal products, genetic stability and safety. In addition, bacterial vaccines delivering a tumor-associated antigen (TAA) stimulate innate immunity and also activate both arms of the adaptive immune system by which they exert efficacious anti-tumor effects. Listeria monocytogenes and several strains of Salmonella have been most extensively studied for this purpose. A number of attenuated strains have been generated and used to deliver antigens associated with infectious diseases and cancer. Although both bacteria are intracellular, the immune responses invoked by Listeria and Salmonella are different due to their sub-cellular locations. Upon entering antigen-presenting cells by phagocytosis, Listeria is capable of escaping from the phagosomal compartment and thus has direct access to the cell cytosol. Proteins delivered by this vector behave as endogenous antigens, are presented on the cell surface in the context of MHC class I molecules, and generate strong cell-mediated immune responses. In contrast, proteins delivered by Salmonella, which lacks a phagosomal escape mechanism, are treated as exogenous antigens and presented by MHC class II molecules resulting predominantly in Th2 type immune responses. This fundamental disparity between the life cycles of the two vectors accounts for their differential application as antigen delivery vehicles. The present paper includes a review of the most recent advances in the development of these two bacterial vectors for treatment of cancer. Similarities and differences between the two vectors are discussed.  相似文献   

2.
The cancer-testis antigen encoded by the MAGE-1 gene is an attractive antigen in tumor immunotherapy because it can be processed as a foreign antigen by the immune system and generate tumor-specific cellular immune response in vivo. However, increase of the potency of MAGE-1 DNA vaccines is still needed. The high degree of sequence homology and intrinsic immunogenicity of heat shock protein 70 (HSP70) have prompted the suggestion that HSP70 might have immunotherapeutic potential, as HSP70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen-presenting cells to elicit peptide-specific immunity. In this research, we evaluated the enhancement of linkage of Mycobacterium tuberculosis HSP70 to MAGE-1 gene of the potency of antigen-specific immunity elicited by naked DNA vaccines. We found that vaccines containing MAGE-1-HSP70 fusion genes enhanced the frequency of MAGE-1–specific cytotoxic T cells in contract to vaccines containing the MAGE-1 gene alone. More importantly, the fusion converted a less effective DNA vaccine into one with significant potency against established MAGE-1–expressing tumors. These results indicate that linkage of HSP70 to MAGE-1 gene may greatly enhance the potency of DNA vaccines, and generate specific antitumor immunity against MAGE-1–expressing tumors.  相似文献   

3.
Technical and regulatory hurdles for DNA vaccines   总被引:13,自引:0,他引:13  
DNA vaccines have been widely used in laboratory animals and non-human primates over the last decade to induce antibody and cellular immune responses. This approach has shown some promise, in models of infectious diseases of both bacterial and viral origin as well as in tumour models. Clinical trials have shown that DNA vaccines appear safe and well tolerated, but need to be made much more potent to be candidates for preventive immunisation of humans. This review describes recent work to improve the delivery of plasmid DNA vaccines and also to increase the immunogenicity of antigens expressed from the DNA vaccine plasmids, including various formulations and molecular adjuvants. Because DNA vaccines are relatively new and represent a novel vaccine technology, certain safety issues, such as the potential for induction of autoimmune disease and integration into the host genome, must be examined carefully. If potency can be improved and safety established, plasmid DNA vaccines offer advantages in speed, simplicity, and breadth of immune response that may be useful for the immunisation of humans against infectious diseases and cancers.  相似文献   

4.
Delivery systems for gene-based vaccines   总被引:8,自引:0,他引:8  
  相似文献   

5.
Conventional treatment approaches for malignant tumors are highly invasive and sometimes have only a palliative effect. Therefore, there is an increasing demand to develop novel, more efficient treatment options. Increased efforts have been made to apply immunomodulatory strategies in antitumor treatment. In recent years, immunizations with naked plasmid DNA encoding tumor-associated antigens have revealed a number of advantages. By DNA vaccination, antigen-specific cellular as well as humoral immune responses can be generated. The induction of specific immune responses directed against antigens expressed in tumor cells and displayed e.g., by MHC class I complexes can inhibit tumor growth and lead to tumor rejection. The improvement of vaccine efficacy has become a critical goal in the development of DNA vaccination as antitumor therapy. The use of different DNA delivery techniques and coadministration of adjuvants including cytokine genes may influence the pattern of specific immune responses induced. This brief review describes recent developments to optimize DNA vaccination against tumor-associated antigens. The prerequisite for a successful antitumor vaccination is breaking tolerance to tumor-associated antigens, which represent "self-antigens." Currently, immunization with xenogeneic DNA to induce immune responses against self-molecules is under intensive investigation. Tumor cells can develop immune escape mechanisms by generation of antigen loss variants, therefore, it may be necessary that DNA vaccines contain more than one tumor antigen. Polyimmunization with a mixture of tumor-associated antigen genes may have a synergistic effect in tumor treatment. The identification of tumor antigens that may serve as targets for DNA immunization has proceeded rapidly. Preclinical studies in animal models are promising that DNA immunization is a potent strategy for mediating antitumor effects in vivo. Thus, DNA vaccines may offer a novel treatment for tumor patients. DNA vaccines may also be useful in the prevention of tumors with genetic predisposition. By DNA vaccination preventing infections, the development of viral-induced tumors may be avoided.  相似文献   

6.
Genetic immunization of neonates   总被引:2,自引:0,他引:2  
The vaccination of neonates is generally difficult due to immaturity of the immune system, higher susceptibility to tolerance and potential negative interference of maternal antibodies. Studies carried out in rodents and non-human primates showed that plasmid vaccines expressing microbial antigens, rather than inducing tolerance, triggered significant humoral and cellular immunity with a Th1 component. The ability of bacterial CpG motifs to activate immature antigen-presenting cells is critical for the neonatal immunogenicity of DNA vaccines. In addition, the endogenous production of antigen subsequent to transfection of antigen-presenting cells may explain the lack of inhibition by maternal antibodies of cellular responses. Together, these features make the plasmid vaccines an appealing strategy to prime immune responses against foreign pathogens, during early life. In combination with subsequent boosting using conventional vaccines, DNA vaccine-based regimens may provide a qualitatively superior immunity against microbes. Thorough understanding of immunomodulatory properties of plasmid-vectors may extend their use for early prophylaxis of inflammatory disorders.  相似文献   

7.
BACKGROUND: A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors. MATERIALS AND METHODS: Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored. RESULTS: Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge. CONCLUSIONS: Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.  相似文献   

8.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

9.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination ‘co-delivery’ and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell – a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

10.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination 'co-delivery' and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell--a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

11.
Synthetic antigens have been shown, in experimental models, to induce protective immunity against a variety of pathogens. These studies have demonstrated that, due to their low immunogenicity, these synthetic antigens required conjugation to carrier molecules. Therefore, the choice of appropriate carriers for human immunization by future synthetic vaccines is a major issue. Tetanus toxoid is generally considered to be an effective potential carrier devoid of side-effects. However, the present study performed in mice with two synthetic vaccine models demonstrates that the immune response against the synthetic epitopes conjugated to tetanus toxoid can be suppressed by pre-existing immunity against this same carrier. Because most humans have been exposed to this antigen, this effect may have important implications for the development of synthetic vaccines.  相似文献   

12.
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.  相似文献   

13.
DNA delivery of tumor antigens can activate specific immune attack on cancer cells. However, antigens may be weak, and immune capacity can be compromised. Fusion of genes encoding activating sequences to the tumor antigen sequence facilitates promotion and manipulation of effector pathways. Idiotypic determinants of B-cell tumors, encoded by the variable region genes, are clone-specific tumor antigens. When assembled as single-chain Fv (scFv) alone in a DNA vaccine, immunogenicity is low. Previously, we found that fusion of a sequence from tetanus toxin (fragment C; FrC) promoted anti-idiotypic protection against lymphoma and myeloma. We have now investigated an alternative fusion gene derived from a plant virus, potato virus X coat protein, a primary antigen in humans. When fused to scFv, the self-aggregating protein generates protection against lymphoma and myeloma. In contrast to scFv-FrC, protection against lymphoma is mediated by CD4+ T cells, as is protection against myeloma. Plant viral proteins offer new opportunities to activate immunity against linked T-cell epitopes to attack cancer.  相似文献   

14.
DNA fusion vaccines against B-cell tumors   总被引:3,自引:0,他引:3  
DNA vaccination is currently being explored as a potential strategy for combatting cancer. However, tumor antigens are often weak and the immune system of patients may be compromised. For B-cell tumors, immunoglobulin idiotypic antigens provide defined targets but are poorly immunogenic. Fusion of a sequence derived from tetanus toxin to the genes encoding idiotypic determinants has proved highly effective in activating protective anti-tumor immunity. DNA fusion vaccines containing immuno-enhancing sequences can augment and direct immune attack on a range of target antigens. Gene-based fusion vaccines offer ease of manipulation and flexible design to activate effective attack on cancer.  相似文献   

15.
Vaccine-induced immunity is expected to target the native antigens expressed by the pathogens. Therefore, it is highly important to generate vaccine antigens that are immunologically indistinguishable from the native antigens. Nucleic acid vaccines, comprised of DNA, mRNA, or recombinant viral vector vaccines, introduce the genetic material encoding the antigenic protein for the host to express. Because these proteins will undergo host posttranslational modifications, host glycosylation can potentially alter the structure and immunological efficacy of the antigen. In this review, we discuss the potential impact of host protein glycosylation on the immune responses generated by nucleic acid vaccines against bacterial and viral pathogens.  相似文献   

16.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors.  相似文献   

17.
While administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) can induce the local recruitment of activated antigen-presenting cells at the site of vaccine inoculation, this cellular recruitment is associated with a paradoxical decrease in local vaccine antigen expression and vaccine-elicited CD8+ T-cell responses. To clarify why this cytokine administration does not potentiate immunization, we examined the recruited cells and expressed inflammatory mediators in muscles following intramuscular administration of plasmid GM-CSF in mice. While large numbers of dendritic cells and macrophages were attracted to the site of plasmid GM-CSF inoculation, high concentrations of type I interferons were also detected in the muscles. As type I interferons have been reported to damp foreign gene expression in vivo, we examined the possibility that these local innate mediators might decrease plasmid DNA expression and therefore the immunogenicity of plasmid DNA vaccines. In fact, we found that coadministration of an anti-beta interferon monoclonal antibody with the plasmid DNA immunogen and plasmid GM-CSF restored both the local antigen expression and the CD8+ T-cell immunogenicity of the vaccine. These data demonstrate that local innate immune responses can change the ability of vaccines to generate robust adaptive immunity.  相似文献   

18.
Recent advances in veterinary vaccine adjuvants   总被引:5,自引:0,他引:5  
Next generation veterinary vaccines are going to mainly comprise of either subunit or inactivated bacteria/viruses. These vaccines would require optimal adjuvants and delivery systems to accord long-term protection from infectious diseases in animals. There is an urgent need for the development of new and improved veterinary and human vaccine adjuvants. Adjuvants can be broadly divided into two classes, based on their principal mechanisms of action: vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, ISCOMS and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns, e.g. LPS, MPL and CpG DNA, which activate cells of the innate immune system. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants might enhance this process in animals and humans alike.  相似文献   

19.
We reported previously that pigeon cytochrome c-derived peptides (Pan-IA), which bind broad ranges of MHC class II molecules efficiently, activate T helper (Th) function in mice. In an experimental model, Pan-IA DNA vaccines augmented antitumor immunity in tumor antigen-immunized mice. To elicit more potent antitumor immunity and to eradicate tumors in a therapeutic setting, Pan-IA-loaded dendritic cells (DCs) were inoculated in combination with vaccines including ovalbumin (OVA) antigen DNA in tumor-bearing mice. Seventy percent of the immunized mice survived tumor-free for at least 4 months after treatment. In contrast, mice vaccinated with OVA DNA, either with or without naïve DCs, did not eliminate the tumors and died within 5 weeks. Only in mice vaccinated with OVA DNA and Pan-IA-loaded DCs were both cytotoxic and helper responses specific for OVA induced at the spleen and tumor sites as well as at the vaccination sites. Furthermore, accumulation of OVA-specific CD4+ and CD8+ T lymphocytes and interferon-gamma-mediated anti-angiogenesis were observed in the tumors of these mice. Thus, the combined vaccination primed both tumor-specific cytotoxicity and helper immunity resulting in augmented tumor lysis ability and anti-angiogenic effects. This is the first report to show that most established tumors were successfully eradicated by collaboration of potent antitumor immunity and anti-angiogenic effects by vaccination with tumor antigens and helper-activating analogs. This novel vaccination strategy is broadly applicable, regardless of identifying helper epitopes in target molecules, and contributes to the development of therapeutic cancer vaccines.  相似文献   

20.
Gene-modified tumor cells as cellular vaccine   总被引:5,自引:0,他引:5  
 The identification and characterization of many tumor antigens and the parallel explosion of knowledge of the cellular and molecular mechanisms of antigen recognition by the immune system have given renewed hopes that immunogenetherapy could be a promising modality to treat certain tumors. Many different novel strategies have been developed to derive genetically modified tumor cells and use them as cellular vaccines to induce useful antitumor immunity in a variety of animal tumor models. This review discusses induction of tumor immunity by injecting tumor cells that are genetically engineered to secrete various cytokines and to express major histocompatibility complex molecules and/or costimulatory molecules. While there has been a great success in inducing excellent antitumor immunity in a variety of tumor models, there are some difficulties and limitations in the application of these gene-modified tumor cells for the treatment of preexisting tumors. A number of improvements and modifications are already underway to overcome some of these problems. Received: 6 August 1996 / Accepted: 20 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号