首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The turkey is an agriculturally important species for which, until now, there is no published genetic linkage map based on microsatellite markers--still the markers most used in the chicken and other farm animals. In order to increase the number of markers on a turkey genetic linkage map we decided to map new microsatellite sequences obtained from a GT-enriched turkey genomic library. In different chicken populations more than 35-55% of microsatellites are polymorphic. In the turkey populations tested here, 43% of all turkey primers tested were found to be polymorphic, in both commercial and wild type turkeys. Twenty linkage groups (including the Z chromosome) containing 74 markers have been established, along with 37 other unassigned markers. This map will lay the foundations for further genetic mapping and the identification of genes and quantitative trait loci in this economically important species. Genome comparisons, based on genetic maps, with related species such as the chicken would then also be possible. All primer information, polymerase chain reaction (PCR) conditions, allele sizes and genetic linkage maps can be viewed at http://roslin.thearkdb.org/. The DNA is also available on request through the Roslin Institute.  相似文献   

2.
The mitochondrial genome (mtGenome) has been little studied in the turkey ( Meleagris gallopavo ), a species for which there is no publicly available mtGenome sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. The entire sequence (16 717 bp) of the turkey mtGenome was obtained, and it exhibited 85% similarity to the chicken mtGenome sequence. Thirteen genes and 24 RNAs (22 tRNAs and 2 rRNAs) were annotated. An mtGenome-based phylogenetic analysis indicated that the turkey is most closely related to the chicken, Gallus gallus , and quail, Corturnix japonica . Given the importance of the mtGenome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economically significant traits in the turkey.  相似文献   

3.
Genetic differences within and among naturally occurring populations of wild turkeys (Meleagris gallopavo) were characterized across five subspecies' historical ranges using amplified fragment length polymorphism (AFLP) analysis, microsatellite loci and mitochondrial control region sequencing. Current subspecific designations based on morphological traits were generally supported by these analyses, with the exception of the eastern (M. g. silvestris) and Florida (M. g. osceola) subspecies, which consistently formed a single unit. The Gould's subspecies was both the most genetically divergent and the least genetically diverse of the subspecies. These genetic patterns were consistent with current and historical patterns of habitat continuity. Merriam's populations showed a positive association between genetic and geographical distance, Rio Grande populations showed a weaker association and the eastern populations showed none, suggesting differing demographic forces at work in these subspecies. We recommend managing turkeys to maintain subspecies integrity, while recognizing the importance of maintaining regional population structure that may reflect important adaptive variation.  相似文献   

4.
Twenty-one randomly selected clones from a turkey (Meleagris gallopavo) pituitary complementary DNA (cDNA) library were sequenced to develop expressed sequence tags (ESTs) for this economically important avian species whose genome is among the least understood. Primers specific for the ESTs were used to produce amplicons from the genomic DNA of turkey, chicken (Gallus gallus), guinea fowl (Numidia meleagris), pigeon (Columba domestica), and quail (Corturnix japonica). The amplicons were sequenced and analyzed for sequence variation within- and similarity among-species and with GenBank database sequences. The proportion of shared bases between the turkey sequence and the consensus sequence from each of the other species ranged from 72% to 93% between turkey and pigeon and quail and between turkey and chicken, respectively. The total number of single nucleotide polymorphisms (SNPs) observed ranged from 3 in quail to 18 in chicken out of 4898 and 5265 bases analyzed, respectively. The most frequent nucleotide variation observed was a C-->T transition. Linkage analysis of one such SNP in the backcross progeny of the East Lansing reference DNA panel, localized TUS0005, the chicken sequence derived from primers specific for turkey TUT2E EST, to chromosome 4. The ESTs reported, as well as the SNPs may provide a useful resource for ongoing efforts to develop high utility genome maps for the turkey and chicken. The primers described can also be used as a tool in future investigations directed at further understanding the biology of the guinea fowl, pigeon and quail and their relatedness to the turkey.  相似文献   

5.
New microsatellite loci for the turkey (Meleagris gallopavo) were developed from two small insert DNA libraries. Polymorphism at these new loci was examined in domestic birds and two resource populations designed for genetic linkage mapping. The majority of loci (152 of 168) was polymorphic in domestic turkeys and informative in two mapping resource populations and thus will be useful for genetic linkage mapping.  相似文献   

6.
A chicken embryonic cDNA library was screened with a (TG)13 probe in order to develop polymorphic microsatellite markers. The redundancy of the embryonic cDNA library with a chicken brain cDNA library, which was used for microsatellite development in a previous study, was extremely high. Of the 300 (TG)13 positive clones, only 80 were unique for the embryonic cDNA library. Still, nine expressed sequences derived from the embryonic cDNA library were mapped in the Wageningen (WAU) resource population. In addition seven microsatellite markers from the chicken brain cDNA library, which were monomorphic or unlinked in the two international reference families in the previous study, were also mapped in the WAU population. Three of the 16 mapped chicken expressed sequence tags (ESTs) showed relatively high percentages of sequence similarity to sequences found in other species. As two of these genes, RAB6 and ZFX/ZFY, have been mapped in humans, they contribute to the comparative map of the chicken.  相似文献   

7.
We describe the mapping of amplified restriction fragment polymorphism (AFLP) markers in chicken (Gallus domesticus) using a multi-colour fluorescent detection system. DNA was used from a population consisting of four families with a total of 183 F2 individuals. The enzyme combination EcoRI/TaqI was used for double digestion, and fluorescently labelled fragments were analysed on an ABI PRISM 377 DNA sequencer. Polymorphic signals in the range of 50-500 bp were genotyped with the ABI PRISM Genotyper 2.0 software, which enabled the analysis of both dominant and incomplete dominant markers (with respect to AFLP, often referred to as codominant). In 19 sets consisting of 3 EcoRI/TaqI primer pair combinations each, a total of 475 polymorphic markers was detected. From these polymorphisms 344 markers could be mapped on the Wageningen linkage map. Fourteen markers were length polymorphisms of the same fragment and 28 markers Z-linked and uniformative; 64 AFLP markers appeared to be unlinked and 25 AFLP markers could not be accurately mapped on the basis of the genotyping results. The resulting AFLP/microsatellite linkage map is comprised of 33 linkage groups with a total of 835 loci.  相似文献   

8.
Identifying and selectively breeding for improved traits is one of the ultimate goals of genetic research in agriculturally important species. Genome characterization and analysis are important first steps in this process. Genetic linkage maps based on the linear order of polymorphic DNA markers are typically developed through statistical analysis of inheritance patterns in pedigreed families. To develop microsatellite markers for further improvement of the turkey genetic linkage map, small-insert genomic libraries were screened for tandem repeats. Oligonuclotide primers were designed to amplify 164 microsatellite-containing fragments from genomic DNA. Genetic polymorphisms at 154 markers were determined by genotyping the F(1) individuals of two resource populations. Markers determined as segregating in the University of Minnesota/Nicholas Turkey Breeding Farms (UMN/NTBF) reference population were used to genotype F(2) individuals and a two-point linkage analysis was performed.  相似文献   

9.
Translocation is a widely used tool in wildlife management, but populations established as a result of translocations may be subject to a range of genetic problems, including loss of genetic diversity and founder effects. The genetic impact of single translocation events can be difficult to assess because of complex management histories in translocated or source populations. Here we use molecular markers to assess the genetic impact of three well-documented translocation events, each occurring between 42 and 53 years ago and each originating from a native, extant source population that we also included in our study. Comparing translocated populations to their sources, we found genetic evidence of a recent bottleneck in all three translocated populations, including one which is now a very large, productive population. Based on our results, we recommend caution in (1) using short term census data to assess the long term success of a translocation and (2) conducting serial translocations (i.e., using translocated populations as the source for other translocations), which could exacerbate a genetic bottleneck. We also used the data on translocated populations to investigate the relative utility of three bottleneck detection methods. With this dataset, only assessment of the modal allele frequency distribution, described by Luikart etal. [Journal of Heredity, 89, 238–247 (1998)], provided evidence of a bottleneck in the absence of source population data.  相似文献   

10.
Sequence similarity was used to predict the position of expressed sequence tags (ESTs) in the genome of the turkey (Meleagris gallopavo). Turkey EST sequences were compared with the draft assembly of the chicken whole-genome sequence and the chicken EST database by BLASTN. Among the 877 ESTs examined, 788 had significant matches in the chicken genome sequence. Position of orthologous sequences in the chicken genome and the predicted position of the EST loci in the turkey genome are presented Genetic assignments suggest a high level of accuracy for the COMPASS predictions.  相似文献   

11.
We describe the isolation, development and application of seven microsatellite loci in the eastern wild turkey, Meleagris gallopavo silvestris, as well as their amplification and levels of polymorphism in the domestic turkey. The number of alleles per locus ranged from 5 to 15 and average heterozygosity was high for almost all loci. Domestic turkeys showed significantly reduced numbers of alleles per locus and overall heterozygosities when compared to eastern wild turkeys. The high variability in these markers should provide the level of resolution required to continue studies of wild turkey population genetics.  相似文献   

12.
A cDNA clone homologous to the fibroblast growth factor homologous factor (FHF-2) was isolated and sequenced from the turkey (Meleagris gallopavo). The DNA sequence of the turkey was almost identical to that of the chicken (99% similarity) differing at only 8 of 770 nucleotides in the coding region resulting in a single amino acid difference between these poultry species. The 3'UTR of the turkey FHF-2 gene was 445 nucleotides in length and included an imperfect CT microsatellite (ms) repeat. The sequence of the 3'UTR was amplified from genomic DNA of the chicken and found to be highly conserved differing at only three nucleotides when compared to the turkey. Length of the CT repeat was indifferent in a sample of 52 turkeys (monomorphic) however, the number of CT repeats was greater in the turkey than in the chicken. No inter-individual polymorphism was detected in multiple sequences of the 3'UTR of the FHF-2 gene in the turkey. Based on comparison of the turkey and chicken sequences, the mutation rate for coding and associated non-coding (3'UTR) regions of FHF-2 are approximately equal.  相似文献   

13.
Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA‐originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last . A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein‐coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage.  相似文献   

14.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

15.
In turkeys, spontaneous cardiomyopathy or round heart (RH) disease is characterised by dilated ventricles and cardiac muscle hypertrophy. Although the aetiology of RH is still unknown, the disease can have a significant economic impact on turkey producers. In an initial attempt to identify genomic regions associated with RH, we utilised the chicken genome sequence to target short DNA sequences (sequence-characterised amplified regions, SCARs) identified in previous studies that had significant differences in frequency distribution between RH+ and RH- turkeys. SCARs were comparatively aligned with the chicken whole-genome sequence to identify flanking regions for primer design. Primers from 32 alignments were tested and target sequences were successfully amplified for 30 loci (94%). Comparative re-sequencing identified putative SNPs in 20 of the 30 loci (67%). Genetically informative SNPs at 16 loci were genotyped in the UMN/NTBF turkey mapping population. As a result of this study, 34 markers were placed on the turkey/chicken comparative map and 15 markers were added to the turkey genetic linkage map. The position of these markers relative to cardiac-related genes is presented. In addition, analysis of genotypes at 109 microsatellite loci presumed to flank the SCAR sequences in the turkey genome identified four significant associations with RH.  相似文献   

16.
Integration of turkey genetic maps and their associated markers is essential to increase marker density in support of map-based genetic studies. The objectives of this study were to integrate 2 microsatellite-based turkey genetic maps--the Roslin map and the University of Minnesota (UMN) map--by genotyping markers from the Roslin study on the mapping families of the UMN study. A total of 279 markers was tested, and 240 were subsequently screened for polymorphisms in the UMN/Nicholas Turkey Breeding Farms (NTBF) mapping families. Of the 240 markers, 89 were genetically informative and were used for genotyping the F2 offspring. Significant genetic linkages (log of odds > 3.0) were found for 84 markers from the Roslin study. BLASTn comparison of marker sequences with the draft assembly of the chicken genome found 263 significant matches. The combination of genetic and in silico mapping allowed for the alignment of all linkage groups of the Roslin map with those of the UMN map. With the addition of the markers from the Roslin map, 438 markers are now genetically linked in the UMN/NTBF families, and more than 1700 turkey sequences have now been assigned to likely positions in the chicken-genome sequence.  相似文献   

17.
Use of chicken microsatellite markers in turkey: a pessimistic view   总被引:3,自引:0,他引:3  
Eighty-eight chicken microsatellite markers, previously developed in our laboratory, were tested for their ability to amplify polymorphic fragments using turkey genomic DNA. Amplification products were obtained for 61 chicken microsatellite markers (69.1%) whereas 27 (30.9%) did not give rise to any products, even when different polymerase chain reaction conditions were employed. From the 61 markers that gave a product, only eight showed a length polymorphism while 37 were monomorphic on the three divergent commercial turkey lines used. The remaining 16 markers yielded many unspecific bands and no specific amplification product could be obtained. Five polymorphic and eleven monomorphic products contained a detectable microsatellite repeat. Furthermore, of the markers that detected a polymorphism in turkey, the observed heterozygosity (15–50%) and allelic variation (only 2 in most cases) was very low. Therefore, on the basis of our results, we think that chicken microsatellite markers are not very useful for mapping purposes in turkey.  相似文献   

18.
Cytochromes P450 (P450) are a superfamily of membrane-bound hemoproteins that oxidize a large number of endogenous and exogenous compounds. The recently cloned P450 gene (CYP1A5) encodes the primary protein responsible for epoxidation of aflatoxin B(1) (AFB(1)) in the turkey, an animal extremely sensitive to this mycotoxin. Hypersensitivity of turkeys to AFB(1) was first demonstrated by association with 'Turkey X Disease' which caused widespread deaths of turkeys and other poultry throughout Europe in the 1960s, later shown to be caused by AFB(1)-contaminated feed. In this study, comparative genomic approaches were used to selectively amplify and sequence the introns and 3' flanking region of CYP1A5. The structure of the CYP1A5 gene in the turkey is shown to be equivalent to that of the human CYP1A genes with seven exons of 38, 858, 127, 90, 124, 87 and 307 bp, respectively, and six introns. A single nucleotide polymorphism (SNP) in the 3' UTR was used to assign CYP1A5 to turkey linkage group M16 (equivalent to chicken chromosome 10). The results of this study provide the framework for identifying allelic variants of this biochemically important P450 gene in poultry.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号