首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microzooplankton grazing can have significant impacts on the distribution and abundance of phytoplankton, thereby influencing the frequency and duration of algae blooms. Observations of high ciliate abundances in the Suwannee River estuary, Florida, suggest a significant potential for top-down pressure on the phytoplankton community by microzooplankton. We examined the composition of the microzooplankton and determined grazing mortality losses for phytoplankton within the Suwannee River estuary from 2001 to 2002. Our results indicated grazing mortality rates of 1.4 d−1, equivalent to a loss of up to 76% of phytoplankton standing crop and up to 83% of total daily primary production. The microzooplankton community was primarily composed of ciliates, dinoflagellates, and copepod nauplii. The densities of ciliates in the estuary were comparable to densities reported in highly eutrophic ecosystems (9,400–72,800 ciliates l−1). Grazing pressure on small phytoplankton may be further enhanced because ciliates and small dinoflagellates have growth rates similar to those of phytoplankton, and therefore can keep up with surges in abundance. Handling editor: Judit Padisak  相似文献   

2.
Microzooplankton grazing and community structure were investigatedin the austral summer of 1995 during a Southern Ocean Drogueand Ocean Flux Study (SODOFS) at the ice-edge zone of the LazarevSea. Grazing was estimated at the surface chlorophyll maximum(5–10 m) by employing the sequential dilution technique.Chlorophyll a concentrations were dominated by chainformingmicrophytoplankton (>20 µm) of the genera Chaetocerosand Nitzschia. Microzooplankton were numerically dominated byaloricate ciliates and dinoflagellates (Protoperidinium sp.,Amphisoleta sp. and Gymnodinium sp.). Instantaneous growth ratesof nanophytoplankton (<20 µm) varied between 0.019and 0.080 day–1, equivalent to between 0.03 and 0.12 chlorophylldoublings day–1. Instantaneous grazing rates of microzooplanktonon nanophytoplankton varied from 0.012 to 0.052 day–1.This corresponds to a nanophytoplankton daily loss of between1.3 and 7.0% (mean = 3.76%) of the initial standing stock, andbetween 45 and 97% (mean = 70.37%) of the daily potential production.Growth rates of microphytoplankton (>20 µm) were lower,varying between 0.011 and 0.070 day–1, equivalent to 0.015–0.097chlorophyll doublings day–1. At only three of the 10 stationsdid grazing by microzooplankton result in a decrease in microphytoplanktonconcentration. At these stations instantaneous grazing ratesof microzooplankton on microphytoplankton ranged between 0.009and 0.015 day–1, equivalent to a daily loss of <1.56%(mean = 1.11%) of initial standing stock and <40% (mean =28.55%) of the potential production. Time series grazing experimentsconducted at 6 h intervals did not show any diel patterns ofgrazing by microzooplankton. Our data show that microzooplanktongrazing at the ice edge were not sufficient to prevent chlorophylla accumulation in regions dominated by rnicrophytoplankton.Here, the major biological routes for the uptake of carbon thereforeappear to be grazing by metazoans or the sedimentation of phytoplanktoncells. Under these conditions, the biological pump will be relativelyefficient in the drawdown of atmospheric CO2.  相似文献   

3.
Microzooplankton grazing rates were compared between two sites (S1 and S2) in the coastal seas of eastern Hong Kong with similar physio-chemical parameters, but different chlorophyll concentrations. During the period from March 2007 to January 2008, six sets of dilution experiments, combined with high performance liquid chromatography and phytoplankton size fractionation (< 200 μm, < 20 μm and < 5 μm), were carried out to study the microzooplankton grazing rate on phytoplankton of different taxonomic groups and sizes. Although total chlorophyll a concentrations were much higher in S1 (4.98-18.42 μg l− 1) than in S2 (0.29-1.68 μg l− 1), size composition of phytoplankton was relatively similar between the two sites. Measured as chlorophyll a, phytoplankton growth rates (− 0.84-1.91 d− 1 in S1; 0.03-2.85 d− 1 in S2) and microzooplankton grazing rates (0.00-2.26 d− 1 in S1; 0.00-1.49 d− 1 in S2) for all three size fractions were similar between the two bays. Phytoplankton growth rates and microzooplankton grazing rates measured as other pigments for phytoplankton of different size fractions did not show strong variations. Microzooplankton grazing impact, expressed as the ratio of microzooplankton grazing rate to phytoplankton growth rate, was generally higher in S1 than in S2, although the difference was not statistically significant. High microzooplankton grazing impact on alloxanthin (1.00-45.85) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

4.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

5.
Phytoplankton growth and microzooplankton grazing rates wereevaluated in one station in Bahía Concepción,located in the middle region of the Gulf of California, México.We used high-performance liquid chromatography (HPLC) estimationsof phytoplankton pigment signatures to evaluate the annual variationof taxon-specific grazing and growth rates obtained with thedilution technique. Chlorophyll-a (Chl-a) concentrations variedwidely (0.34–3.32 µg L–1) and showed two maxima,during late spring and autumn, associated with the transitionbetween mixed and stratified conditions. Phytoplankton growthrates varied seasonally with the lowest rates during summer(range: 0.01–2.55 day–1 for Chl-a; 0.00–3.84day–1 for Chl-b; 0.26–3.29 day–1 for fucoxanthin;0.00–6.27 day–1 for peridinin; 0.00–4.35 day–1for zeaxanthin). Microzooplankton grazing was an important lossprocess (range: 0.0–1.89 day–1 for Chl-a; 0.00–3.12day–1 for Chl-b; 0.26–3.29 day–1 for fucoxanthin;0.00–2.03 day–1 for peridinin; 0.00–3.51 day–1for zeaxanthin). Average grazing rates accounted 68–89%of estimated average phytoplankton pigment-specific growth rates.The analysis of pigment signatures indicates that diatoms anddinoflagellates were the dominant groups, and contrary to expectationfor typical subtropical lagoons, the specific growth rates inBahía Concepción showed a pronounced seasonalvariability, linked to transitional hydrographic conditions.Our results indicate a close coupling between the communitymicrozooplankton grazing and phytoplankton growth rates, withoutselective feeding behavior. These results suggest that microzooplanktonplay a critical role and may significantly modify the availabilityand efficiency of transfer of energy to higher trophic levels.  相似文献   

6.
Dilution and copepod addition incubations were conducted in the Yellow Sea (June) and the East China Sea (September) in 2003. Microzooplankton grazing rates were in the range of 0.37–0.83 d−1 in most of the experiments (except at Station A3). Correspondingly, 31–50% of the chlorophyll a (Chl a) stock and 81–179% of the Chl a production was grazed by microzooplankton. At the end of 24 h copepod addition incubations, Chl a concentrations were higher in the copepod-added bottles than in the control bottles. The Chl a growth rate in the bottles showed good linear relationship with added copepod abundance. The presence of copepods could enhance the Chl a growth at a rate (Z) of 0.03–0.25 (on average 0.0691) d−1 ind−1 l. This study, therefore parallels many others, which show that microzooplankton are the main grazers of primary production in the sea, whereas copepods appear to have little direct role in controlling phytoplankton.  相似文献   

7.
The dilution technique was used to estimate chlorophyll and pheopigment, net and gross production as well as zooplankton grazing over a 12-month period in a coastal lagoon in Southern France. Chlorophyll a (Cha) based gross growth rates of phytoplankton ranged from undetectable in February to 2.6 day−1 in June, corresponding to 3.8 divisions per day. Cha-based grazing rates ranged from undetectable in February to 1.1 d−1 in June. The seasonal growth pattern of picoplankton was similar to that of the whole community, with a peak in July, corresponding to four divisions per day. Grazing processes represented from 20 to 150% of the phytoplankton daily growth, and the grazing pressure was stronger on small phytoplankton cells than on larger cells. Gross growth rates of phytoplankton were related to zooplankton grazing rates, and both were related to water temperature. Mesozooplankton which escaped sampling or oysters had to be also invoked as additional sinks for the primary production. In the fall, pheopigment concentrations greater than chlorophyll concentrations coincided with high ammonium levels in the water column. Pheopigment a production rates were highly correlated to chlorophyll -based microzooplankton grazing rates. The pheopigment a to chlorophyll a ratio was correlated with ammonium concentrations and could be used an index of the balance between ammonium supply (degradation) and demand (uptake by phytoplankton). In addition, pheopigment degradation rates in absence of grazing could be related to irradiance, indicating photo-degradation of these compounds.  相似文献   

8.
To investigate the impact of microzooplankton grazing on phytoplankton bloom in coastal waters, an enclosure experiment was conducted in Saanich Inlet, Canada during the summer of 1996. Daily changes in the microzooplankton grazing rate on each phytoplankton group were investigated with the growth rates of each phytoplankton group from the beginning toward the end of bloom using the dilution technique with high-performance liquid chromatography (HPLC). On Day 1 when nitrate and iron were artificially added, chlorophyll a concentration was relatively low (4.3 μg l−1) and 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were predominant in the chlorophyll biomass. However, both the synthetic rates and concentrations of 19′-hexanoyloxyfucoxanthin declined before bloom, suggesting that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes weakened. Chlorophyll a concentration peaked at 23 μg l−1 on Day 4 and the bloom consisted of the small chain-forming diatoms Chaetoceros spp. (4 μm in cell diameter). Diatoms were secondary constituents in the chlorophyll biomass at the beginning of the experiment, and the growth rates of diatoms (fucoxanthin) were consistently high (>0.5 d−1) until Day 3. Microzooplankton grazing rates on each phytoplankton group remarkably increased except on alloxanthin-containing cryptophytes after the nutrient enrichments, and peaked with >0.6 d−1 on Day 3, indicating that >45% of the standing stock of each phytoplankton group was removed per day. Both the growth and mortality rates of alloxanthin-containing cryptophytes were relatively high (>1 and >0.5 d−1, respectively) until the bloom, suggesting that a homeostatic mechanism might exist between predators and their prey. Overall, microzooplankton grazing showed a rapid response to the increase in phytoplankton abundance after the nutrient enrichments, and affected the magnitude of the bloom significantly. High grazing activity of microzooplankton contributed to an increase in the abundance of heterotrophic dinoflagellates with 7-24 μm in cell size, the fraction of large-sized (>10 μm) chlorophyll a, and stimulated the growth of larger-sized ciliates after the bloom.  相似文献   

9.
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both phytoplankton and bacterioplankton biomass and activity along the estuary. While in the Northern region phytoplankton is light-limited, with mean phytoplankton production (PP) between 1.1 and 1.9 μg C l−1 h−1 and mean specific growth rates (PSG) between 0.14 and 0.16 d−1, the Southern region registered values as high as 24.7 μg C l−1 h−1 for PP and 2.45 d−1 (mean PP between 3.4 and 7.3 μg C l−1 h−1; mean PSG between 0.28 and 0.57 d−1). On the other hand, maximum bacterial production (BP: 63.8 μg C l−1 h−1) and specific growth rate (BSG: 32.26 d−1) were observed in the Northern region (mean BP between 3.4 and 12.8 μg C l−1 h−1; mean BSG between 1.98 and 6.67 day−1). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (∼45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001). Handling editor: P. Viaroli  相似文献   

10.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

11.
The abundance, growth, and grazing loss rates of picophytoplankton were investigated in August 2002 in Barguzin Bay, Lake Baikal. Water samples for incubation were taken once at a near-shore station and twice at an offshore station. Contributions of picophytoplankton to total phytoplankton were high (56.9–83.9%) at the offshore station and low (5.8–6.8%) at the near-shore station. The picophytoplankton community in the offshore station comprised mainly phycoerythrin (PE)-rich cyanobacteria, with eukaryotic picophytoplankton being less abundant. In contrast, as well as PE-rich cyanobacteria and eukaryotic picophytoplankton, phycocyanin (PC)-rich cyanobacteria were found in the near-shore station. At the offshore station, growth and grazing loss rates on 25 August were 0.56 and 0.43 day−1, respectively, and on 29 August, 0.69 and 0.83 day−1, respectively. At the near-shore station, growth and grazing loss rates were 1.61 and 0.70 day−1, respectively. These results show that there is a difference in the abundance, composition, and ecological role in the microbial food web of picophytoplankton between the near-shore and the offshore areas in Barguzin Bay.  相似文献   

12.
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d−1 to 0.89 d−1, whereas grazing rate of microzooplankton ranged between 0.18 d−1 and 0.68 d−1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d−1 to 49.1% d−1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d−1 to 83.6% d−1 in different seasons.  相似文献   

13.
The ubiquitous, biogenic trace gas dimethylsulfide (DMS) represents the largest natural source of atmospheric sulfur. Given DMS involvement in cloud formation and climate, understanding and parameterizing the oceanic DMS source and cycling processes is a necessary challenge. We report DMS cycling rates from microzooplankton dilution grazing experiments conducted monthly during 1 year in coastal northwestern Mediterranean waters. Concentrations of DMS, its algal precursor dimethylsulfoniopropionate (DMSPt) and chlorophyll a (Chla) ranged 0.9–11 nmol L?1, 10–71 nmol L?1, and 0.2–1.5 µg L?1, respectively. By comparing the growth and stock production rates of the DMSP-producing algae to those of total phytoplankton, we estimated that 3?±?4% (range 0.4–12%) of the carbon primary production was invested in DMSP biosynthesis. Microzooplankton grazing rates on DMSP-producing phytoplankton (0.46–1.45 day?1) were generally higher than those on the bulk assemblage (0.08–0.99 day?1), except in midsummer months. This could have been due to the smaller size of most DMSP producers. There was no indication of micrograzer selection against DMSP-containing phytoplankton, since they were not grazed at lower rates than the bulk phytoplankton assemblage. A proportion of 6–20% of the grazed DMSP was converted into DMS, and this grazing-derived production accounted for 32–96% of dark gross DMS production by the total community. Bacteria consumed daily?≤?14–100% of the gross DMS production, which resulted in biological DMS turnover times of 1 to?≥?10 days. Throughout the year, grazing-mediated DMS production explained 73% of the variance in the DMS concentration, implying that microzooplankton grazing plays a major role in controlling DMS concentration in surface waters across a broad range of environmental and productivity conditions in the Mediterranean Sea. These findings should help improve the representation of herbivore grazing in prognostic models to predict the distribution and dynamics of the global DMS emission and its feedback response to changing climate.  相似文献   

14.
We measured grazing by herbivorous zooplankton (<200 μm fraction) in coastal and slope regions of the South Brazil Bight. Using the dilution technique, we performed nine experiments during the austral summer, when nutrient-rich South Atlantic Central Water is present on the shelf, and five during winter. These experiments provide the first estimates of microzooplankton grazing in the western South Atlantic Ocean. Model II regression showed a strong relationship between phytoplankton intrinsic growth rates and grazing, with a slope of 0.64 (±0.28; 95% confidence interval) indicating that microzooplankton grazing could account for the majority of phytoplankton mortality. Both phytoplankton growth and microzooplankton grazing were higher during the summer upwelling season, compared to winter. For the two experiments that were conducted in oligotrophic slope water, grazing accounted for >80% of phytoplankton production. A comparison of incubations with and without added inorganic nutrients showed no consistent stimulation of phytoplankton growth (slope of enriched versus unenriched treatments not significantly different from 1). Estimates from microscopic counts of heterotrophic organisms >10 μm indicated that copepod nauplii comprised the largest share of the microzooplankton biomass (mean 62.4 ± 5.8% SE). Grazing estimates were not correlated with microzooplankton biomass, whether or not nauplii were included, suggesting that most of the grazing was done by nano-sized zooplankton. Electronic Supplementary Material Electronic supplementary material is available in the online version of this article at and is accessible for authorized users. Handling editor: S. Wellekens  相似文献   

15.
16.
Liu Z S  Wang C S  Zhang Z N  Liu C G  Yang G M 《农业工程》2006,26(12):3931-3940
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d?1 to 0.89 d?1, whereas grazing rate of microzooplankton ranged between 0.18 d?1 and 0.68 d?1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d?1 to 49.1% d?1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d?1 to 83.6% d?1 in different seasons.  相似文献   

17.
Recent technological advances have led to the discovery that free-living, planktonic protozoa are ubiquitous in nature and appear to be important components of pelagic food webs (e.g., fluorescent straining, flow cytometry). Despite this, limited information exists tying their seasonality to rate processes that drive succession patterns. The abundance, and seasonal growth and grazing loss of an entire protozoan assemblage were evaluated in Lake Michigan. The protozoan assemblage was species-rich (100 taxa) and abundant throughout the year in Lake Michigan. Nano-sized protozoa (Hnano and Pnano, <20 μm in size) ranged in abundance from 102 to 103 cells ml−1, while micro-protozoa (Hmicro and Pmico, >20 and <200 μm in size) ranged in abundance from 4 to 17 cells ml−1. The biomass of Hnano and Hmicro by itself represented more than 70–80% of crustacean zooplankton biomass, while Pnano and Pmicro constituted nearly 50% of phytoplankton biomass. Protozoa exhibited growth rates comparable to other components of the plankton in Lake Michigan, and some populations grew at rates similar to maximum rates determined in the laboratory (rates of 1–2 day−1). Overall, it appears that macro-zooplankton predation is a major loss factor counter-balancing growth with only small differences between the two rate processes (<0.1 day−1). Discrepancies between growth and grazing loss in the spring were likely attributed to sedimentation losses for larger species of tintinnids and dinoflagellates (Codonella, Tintinnidium, and Gymnodinium) that can account for their occurrence in the deep chlorophyll layer. In the summer, carnivory among similar sized species (Chromulina and small ciliates) may be additional loss factors impinging on the protozoan assemblage.  相似文献   

18.
Possible causes of the increased algal blooms in Lake Victoria in the 1980s have been disputed by several authors; some suggested a top-down effect by the introduced Nile perch, whereas others suggested a bottom-up effect due to eutrophication. In this article the potential impact is established of grazing by fish on phytoplankton densities, before the Nile perch upsurge and the concomitant algal blooms in the Mwanza Gulf. The biomass and trophic composition of fish in the sublittoral area of the Mwanza Gulf were calculated based on catch data from bottom trawls, and from gill nets covering the whole water column. Estimates of phytoplankton production in the same area were made from Secchi values and chlorophyll concentrations. The total phytoplankton intake by fish was estimated at 230 mg DW m−2 day−1. The daily gross production ranged from 6,200 to 7,100 mg DW m−2 day−1 and the net production from 1,900 to 2,200 mg DW m−2 day−1. Thus, losses of phytoplankton through grazing by fish were about 3–4% of daily gross and 10–12% of daily net phytoplankton production. As a consequence it is unlikely that the phytoplankton blooms in the second half of the 1980s were due to a top-down effect caused by a strong decline in phytoplankton grazing by fish.  相似文献   

19.
Delaware’s Inland Bays (DIB) are subject to numerous mixed blooms of harmful raphidophytes each year, and Heterosigma akashiwo is one of the consistently occurring species. Often, Chattonella subsalsa, C. cf. verruculosa, and Fibrocapsa japonica co-occur with H. akashiwo, indicating a dynamic consortium of raphidophyte species. In this study, microzooplankton grazing pressure was assessed as a top–down control mechanism on H. akashiwo populations in mixed communities. Quantitative real-time polymerase chain reaction (QPCR) with species-specific primers and probes were used in conjunction with the dilution method to assess grazing pressure on H. akashiwo and other raphidophytes. As a comparison, we measured changes in chlorophyll a (chl a) to determine whole community growth and mortality caused by grazing. We detected grazing on H. akashiwo using QPCR in samples where chl a analyses indicated little or no grazing on the total phytoplankton community. Overall, specific microzooplankton grazing pressure on H. akashiwo ranged from 0.88 to 1.88 day−1 at various sites. Experiments conducted on larger sympatric raphidophytes (C. subsalsa, C. cf. verruculosa and F. japonica) demonstrated no significant microzooplankton grazing on these species. Grazing pressure on H. akashiwo may provide a competitive advantage to other raphidophytes such as Chattonella spp. that are too large to be consumed at high rates by microzooplankton and help to shape the dynamics of this harmful algal bloom consortium. Our results show that QPCR can be used in conjunction with the dilution method for evaluation of microzooplankton grazing pressure on specific phytoplankton species within a mixed community. An erratum to this article can be found at  相似文献   

20.
Fish <1 year old were sampled during 1 year using nets inshore at South Georgia. Some fish were kept in aquaria. Growth rates were estimated using the exponential model. During June to October 1980, field growth rates of Parachaenichthys georgianus and Champsocephalus gunnari were 0.33 and 0.48% SL day−1, respectively. Gobionotothen marionensis (1979 cohort) grew at 0.40% SL day−1 during June to November in the field, and 0.34% SL day−1 in the laboratory from September to March. Notothenia coriiceps grew at 0.28% SL day−1 in the laboratory during September to March. During November to December, Artedidraco mirus grew at 0.82% SL day−1 in the field. The 1980 cohort of G. marionensis grew at 1.39% SL day−1 during November to January in the field. During January, the field growth rate of G. gibberifrons was 1.39% SL day−1. Growth rates increased three-fold from winter to summer. Temperature can only explain one-half of this range in growth rates, whereas all of this range can be explained by food availability. Therefore, seasonal food resource limitation has a major effect on Antarctic fish growth. Received: 30 June 1997 / Accepted: 7 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号