首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: De novo l -DOPA biosynthesis was studied in stably transfected AtT-20 cells expressing wild-type- or [Leu40]-recombinant tyrosine hydroxylase (rTH). Basal rates of DOPA accumulation were much higher by cells expressing rTH in which Leu was substituted for Ser40 (S40L-rTH) than by those expressing wild-type rTH (WT-rTH). Treatment of WT-rTH cells with forskolin produced an increase in DOPA accumulation and a concomitant increase in WT-rTH phospho-Ser40 content, whereas DOPA production by cells expressing S40L-rTH was entirely unaffected by forskolin. After forskolin treatment of 32Pi-prelabeled cells, WT-rTH was phosphorylated at Ser8, Ser19, Ser31, and Ser40, whereas 32P incorporation into S40L-rTH was restricted to Ser8, Ser19, and Ser31. Relatively prolonged treatment of AtT-20 cells expressing WT-rTH with either a depolarizing agent (elevated potassium) or a phosphatase inhibitor (okadaic acid) increased DOPA production and increased the phosphorylation state of Ser40; but, unlike forskolin, these treatments also increased DOPA production by cells expressing S40L-rTH. Thus, the present studies demonstrate that Ser40 phosphorylation mediates forskolin-induced increases in DOPA biosynthesis directly but that mechanisms other than Ser40 phosphorylation can mediate the increases in DOPA biosynthesis produced either by depolarization or by protein phosphatase inhibition.  相似文献   

2.
Abstract: The aim of this study was to determine the effect of angiotensin II (AII) on tyrosine hydroxylase (TOH) activity and phosphorylation in bovine adrenal chromaffin cells (BACCs). We report here that stimulation of BACCs with AII (100 n M ) produced a significant increase in both TOH activity and phosphorylation over a period of 10 min. The increase in TOH activity was receptor-mediated. Tryptic phosphopeptide analysis by HPLC revealed that AII stimulated an increase in phosphorylation of three sites on TOH, Ser19, Ser31, and Ser40, with the largest increase being observed for Ser31 phosphorylation. Pretreatment of the cells with the protein kinase C inhibitor Ro 31-8220 (10 µ M , 15 min) did not affect TOH activity or phosphorylation produced by AII. The inhibitor also did not affect the TOH activity or Ser40 phosphorylation produced by forskolin (10 µ M , 10 min). In contrast, Ro 31-8220 fully inhibited the TOH activation as well as Ser31 and Ser40 phosphorylation of TOH produced by phorbol 12, 13-dibutyrate (500 n M , 10 min). Removal of extracellular Ca2+ from the incubation medium inhibited the AII-induced TOH activity by 50% and significantly blocked Ser19 and Ser31 phosphorylation but did not affect Ser40 phosphorylation in response to AII. These results indicate that AII activates a complex and perhaps novel signaling pathway leading to the phosphorylation and activation of TOH. The TOH activation by AII appears to be partially independent of Ser40 phosphorylation, suggesting a potentially important role for Ser31 phosphorylation.  相似文献   

3.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

4.
Abstract: Tyrosine hydroxylase (TOH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated by phosphorylation. Activation of histaminergic H1 receptors on cultured bovine adrenal chromaffin cells stimulated a rapid increase in TOH phosphorylation (within 5 s) that was sustained for at least 5 min. The initial increase in TOH phosphorylation (up to 1 min) was essentially unchanged by the removal of extracellular Ca2+. In contrast, the H1-mediated response was abolished by preloading the cells with BAPTA acetoxymethyl ester (50 µ M ) and significantly reduced by prior exposure to caffeine (10 m M for 10 min) to deplete intracellular Ca2+. Trypticphosphopeptide analysis by HPLC revealed that the H1 response in the presence or absence of extracellular Ca2+ resulted in a major increase in the phosphorylation of Ser19 with smaller increases in that of Ser40 and Ser31. In contrast, although a brief stimulation with nicotine (30 µ M for 60 s) also resulted in a major increase in Ser19 phosphorylation, this response was abolished in the absence of extracellular Ca2+. These data indicate that the mobilization of intracellular Ca2+ plays a crucial role in supporting H1-mediated TOH phosphorylation and may thus have a potentially important role in regulating catecholamine synthesis.  相似文献   

5.
Manganese (Mn2+) is an essential metal involved in normal functioning of a range of physiological processes. However, occupational overexposure to Mn2+ causes neurotoxicity. The dopaminergic system is a particular target for Mn2+ neurotoxicity. Tyrosine hydroxylase (TH) is the rate limiting enzyme for dopamine synthesis and is regulated acutely by phosphorylation at Ser40 and chronically by protein synthesis. In this study we used pheochromocytoma 12 cells to investigate the effects of Mn2+ exposure on the phosphorylation and activity of TH. Mn2+ treatment for 24 h caused a sustained increase in Ser40 phosphorylation and TH activity at a concentration of 100 μM, without altering the level of TH protein or PC12 cell viability. Inhibition of protein kinase A and protein kinase C and protein kinases known to be involved in sustained phosphorylation of TH in response to other stimuli did not block the effects of Mn2+ on Ser40 phosphorylation. A substantial increase in H2O2 production occurred in response to 100 μM Mn2+. The antioxidant TroloxTM completely inhibited H2O2 production but did not block TH phosphorylation at Ser40, indicating that oxidative stress was not involved. Sustained TH phosphorylation at Ser40 and the consequent activation of TH both occurred at low concentrations of Mn2+ and this provides a potential new mechanism for Mn2+-induced neuronal action that does not involve H2O2-mediated cell death.  相似文献   

6.
Abstract: Ser55 within the head domain of neurofilament light chain (NF-L) is transiently phosphorylated by protein kinase A, and phosphorylation of this residue is thought to regulate assembly of neurofilaments. To understand how Ser55 phosphorylation influences NF-L assembly, wild-type and mutant NF-L genes in which Ser55 was mutated to alanine, so as to prevent phosphorylation, or to aspartate, so as to mimic permanent phosphorylation, were transfected into mammalian cells that contain or do not contain an endogenous intermediate filament network. Wild-type and mutant NF-Ls localised to the Triton X-100-insoluble fraction, which suggests that phosphorylation of Ser55 does not inhibit assembly of NF-L and NF-L/vimentin polymers at or below the tetrameric stage. Immunofluorescence microscopy of transfected cells demonstrated that the wild-type and mutant NF-Ls all colocalised with vimentin to produce similar filamentous arrays. However, in cells lacking an endogenous intermediate filament network, the aspartate mutant produced a pattern of staining different from that of the wild-type or alanine mutant. These results suggest that phosphorylation of NF-L Ser55 is not a mechanism that precludes assembly of neurofilaments from monomers into intermediate filament structures but that phosphorylation/dephosphorylation of this residue might confer more subtle characteristics on neurofilament assembly properties and architecture.  相似文献   

7.
8.
Depolarizing stimuli increase catecholamine (CA) biosynthesis, tyrosine hydroxylase (TH) activity, and TH phosphorylation at Ser19, Ser31, and Ser40 in a Ca(2+)-dependent manner. However, the identities of the protein kinases that phosphorylate TH under depolarizing conditions are not known. Furthermore, although increases in Ser31 or Ser40 phosphorylation increase TH activity in vitro, the relative influence of phosphorylation at these sites on CA biosynthesis under depolarizing conditions is not known. We investigated the participation of extracellular signal-regulated protein kinase (ERK) and cAMP-dependent protein kinase (PKA) in elevated K(+)-stimulated TH phosphorylation in PC12 cells using an ERK pathway inhibitor, PD98059, and PKA-deficient PC12 cells (A126-B1). In the same paradigm, we measured CA biosynthesis. TH phosphorylation stoichiometry (PS) was determined by quantitative blot-immunolabeling using site- and phosphorylation state-specific antibodies. Treatment with elevated K(+) (+ 58 mM) for 5 min increased TH PS at each site in a Ca(2+)-dependent manner. Pretreatment with PD98059 prevented elevated K(+)-stimulated increases in ERK phosphorylation and Ser31 PS. In A126-B1 cells, Ser40 PS was not significantly increased by forskolin, and elevated K(+)-stimulated Ser40 PS was three- to five-fold less than that in PC12 cells. In both cell lines, CA biosynthesis was increased 1.5-fold after treatment with elevated K(+) and was prevented by pretreatment with PD98059. These results suggest that ERK phosphorylates TH at Ser31 and that PKA phosphorylates TH at Ser40 under depolarizing conditions. They also suggest that the increases in CA biosynthesis under depolarizing conditions are associated with the ERK-mediated increases in Ser31 PS.  相似文献   

9.
10.
Antibodies to a Segment of Tyrosine Hydroxylase Phosphorylated at Serine 40   总被引:2,自引:2,他引:0  
Abstract: A synthetic peptide corresponding to residues 32–47 of rat tyrosine hydroxylase (TH) was phosphorylated by protein kinase A at Ser40 and used to generate antibodies in rabbits. Reactivity of the anti-pTH32–47 antibodies with phospho- and dephospho-Ser40 forms of TH protein and peptide TH32–47 was compared with reactivity of antibodies to nonphosphorylated peptide and to native TH protein. In antibody-capture ELISAs, anti-pTH32–47 was more reactive with the phospho-TH than with the dephospho-TH forms. Conversely, antibodies against the nonphosphorylated peptide reacted preferentially with the dephospho-TH forms. In western blots, labeling of the ∼60-kDa TH band by anti-pTH32–47 was readily detectable in lanes containing protein kinase A-phosphorylated native TH at 10–100 ng/lane. In blots of supernatants prepared from striatal synaptosomes, addition of a phosphatase inhibitor was necessary to discern labeling of the TH band with anti-pTH32–47. Similarly, anti-pTH32–47 failed to immunoprecipitate TH activity from supernatants prepared from untreated tissues, whereas prior treatment with either 8-bromoadenosine 3',5'-cyclic monophosphate or forskolin enabled removal of TH activity by anti-pTH32–47. Lastly, in immunohistochemical studies, anti-pTH32–47 selectively labeled catecholaminergic cells in tissue sections from perfusion-fixed rat brain.  相似文献   

11.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

12.
Abstract: Ser55 within the head domain of neurofilament light chain (NF-L) is a target for phosphorylation by protein kinase A. To understand further the physiological role(s) of NF-L Ser55 phosphorylation, we generated transgenic mice with a mutant NF-L transgene in which Ser55 was mutated to Asp so as to mimic permanent phosphorylation. Two lines of NF-L(Asp) mice were created and these animals express the transgene in many neurones of the central and peripheral nervous systems. Both transgenic lines display identical, early onset, and robust pathological changes in the brain. These involve the formation of NF-L(Asp)-containing perikaryal neurofilament inclusion bodies and the development of swollen Purkinje cell axons. Development of these pathologies was rapid and fully established in mice as young as 4 weeks of age. The two transgenic lines show no elevation of NF-L, neurofilament middle chain (NF-M), or neurofilament heavy chain (NF-H), and transgenic NF-L(Asp) represents only a minor proportion of total NF-L protein. Because other published transgenic lines expressing higher levels of wild-type NF-L do not exhibit phenotypic changes that in any way resemble those in the NF-L(Asp) mice and because the two different NF-L(Asp) transgenic lines display identical neuropathological changes, it is likely that the pathological alterations observed in the NF-L(Asp) mice are the result of properties of the mutant NF-L. These results support the notion that phosphorylation of Ser55 is a mechanism for regulating neurofilament organisation in vivo.  相似文献   

13.
Abstract: Antibody Ab262 was raised against a synthetic τ peptide (SKIGSTENLK, amino acids 258–267 of τ, termed Ser262 peptide). The antibody was more reactive with Ser262 peptide and unphosphorylated τ than a related phosphopeptide [SKIGS(P)TENLK, termed P-Ser262 peptide] and τ phosphorylated by a partially purified kinase, glycogen synthase kinase (GSK) 3β. Ab262 reacted poorly with a peptide having the sequence DRVQSKIGSLD (amino acids 348–358). Treatment of P-Ser262 peptide or GSK 3β phosphorylated τ with alkaline phosphatase increased Ab262 immunoreactivity, indicating that Ab262 is a reagent useful for studying τ phosphorylation at the Ser262 residue. The Ab262 immunoreactivity was detected in τ from normal brains and Alzheimer paired helical filament (PHF-τ) and in PHFs. Alkaline phosphatase treatment had no effect on the Ab262 immunoreactivity of normal τ and PHF-τ but altered the Tau-1 and PHF-1 immunoreactivities. τ proteins from rat brains at 3 and 8 h postmortem exhibited 5 and 19%, respectively, more Ab262 immunoreactivity than τ from fresh tissues. In comparison, rat τ at 8 h postmortem was 40% more immunoreactive with Tau-1. The results suggest that Ser262 is not a major phosphorylation site in vivo. Moreover, there is little or no difference between PHF-τ and normal τ in the extent of phosphorylation at Ser262.  相似文献   

14.
Abstract: To study the phosphorylation state of τ in vivo, we have prepared antisera by immunizing rabbits with synthetic phosphopeptides containing phosphoamino acids at specific sites that are potential targets for τ protein kinase II. Immunoblot experiments using these antisera demonstrated that τ in microtubule-associated proteins is phosphorylated at Ser144 and at Ser315. Almost all τ variants separated on two-dimensional gel electrophoresis were phosphorylated at Ser144 and nearly one-half of them at Ser315. Phosphorylation at Ser144 and at Thr147 of τ isolated from heat-stable brain extracts was shown to be developmentally regulated, with the highest level of phosphorylation found at postnatal week 1. In vitro phosphorylation of τ by τ protein kinase I, a kinase responsible for abnormal phosphorylation of τ found in paired helical filaments of patients with Alzheimer's disease, was enhanced by prior phosphorylation of τ by τ protein kinase II. Thus, we suggest that τ protein kinase II is indirectly involved, at least in part, in the regulation of the phosphorylation state of τ in neuronal cells.  相似文献   

15.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   

16.
Abstract: Recent evidence suggests that β-amyloid peptide (β-AP) may induce tau protein phosphorylation, resulting in loss of microtubule binding capacity and formation of paired helical filaments. The mechanism by which β-AP increases tau phosphorylation, however, is unclear. Using a hybrid septal cell line, SN56, we demonstrate that aggregated β-AP1–40 treatment caused cell injury. Accompanying the cell injury, the levels of phosphorylated tau as well as total tau were enhanced as detected immunochemically by AT8, PHF-1, Tau-1, and Tau-5 antibodies. Alkaline phosphatase treatment abolished AT8 and PHF-1 immunoreactivity, confirming that the tau phosphorylation sites were at least at Ser199/202 and Ser396. In association with the increase in tau phosphorylation, the immunoreactivity of cell-associated and secreted β-amyloid precursor protein (β-APP) was markedly elevated. Application of antisense oligonucleotide to β-APP reduced expression of β-APP and immunoreactivity of phosphorylated tau. Control peptide β-AP1–28 did not produce significant effects on tau phosphorylation, although it slightly increased cell-associated β-APP. These results suggest that βAP1–40-induced tau phosphorylation may be associated with increased β-APP expression in degenerated neurons.  相似文献   

17.
Abstract: A small number of p185c- neu receptors have been found on PC12 cells. These receptors show some basal phosphorylation in quiescent cells. When the cells are treated with nerve growth factor (NGF) for a short time, some increase in phosphorylation is seen, mainly on serine and threonine residues, and this is accompanied by a slight shift in the apparent molecular weight. Epidermal growth factor (EGF) also increases the phosphorylation of p185c- neu , in this case on tyrosine residues. Neither heregulin-β1 nor gp30 stimulates the tyrosine phosphorylation of p185c- neu , and neither has a proliferative effect on the cells. Treatment of the cells with NGF for 5 days produces a 70–80% reduction in the number of p185c- neu receptors. This down-regulation does not occur when PC12nnr5 cells, which lack the high-affinity NGF receptor, p140 trk , are treated with NGF.The level of p185c- neu mRNA is not altered by NGF treatment, suggesting that the down-regulation is due to either a translational or a posttranslational alteration.  相似文献   

18.
Abstract: The activation of cyclic AMP-dependent protein kinase (PKA) in rat dorsal root ganglion (DRG) cultures increased phosphorylation of the low-molecular-mass neurofilament subunit (NFL) at a site previously identified as Ser55 but had no effect on neurofilament integrity. When PKA was activated in DRG cultures treated with 20–250 n M okadaic acid, neurofilament fragmentation was enhanced, and there was a corresponding increase in phosphorylation of NFL at a novel site. This site was also phosphorylated by PKA in vitro and was determined to be Ser2 by mass spectrometric analysis of the purified chymotryptic phosphopeptide. The PKA sites in NFL were dephosphorylated by the purified catalytic subunit of protein phosphatase-2A but not that of protein phosphatase-1, and phosphoserine-2 was a better substrate than phosphoserine-55. The phosphorylation and dephosphorylation of Ser2 and Ser55 in NFL may therefore be involved in the modulation of neurofilament dynamics through the antagonistic effects of PKA and protein phosphatase-2A.  相似文献   

19.
Abstract: Abnormally hyperphosphorylated τ is the major protein subunit of paired helical filaments in Alzheimer brains. We have examined its site-specific dephosphorylation by different protein phosphatases. Dephosphorylation of τ was monitored by its interaction with several phosphorylation-dependent antibodies. Alzheimer τ was dephosphorylated by brain protein phosphatase-2B at the abnormally phosphorylated sites Ser46, Ser199, Ser202, Ser235, Ser396, and Ser404, and its relative mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis shifted to that of normal τ. Protein phosphatases-1 and -2A could dephosphorylate only some of the above six phosphorylation sites. These results indicate that protein phosphatase-2B might be involved in hyperphosphorylation of τ in Alzheimer's disease.  相似文献   

20.
Abstract: In this report, the phosphorylation sites of neurofilament protein of medium molecular mass (NF-M) by protein kinase FA/glycogen synthase kinase 3α (kinase FA/GSK-3α) were determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, HPLC, Edman degradation, and peptide sequencing. Kinase FA/GSK-3α phosphorylates NF-M predominantly on serine, residue. Three major tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Edman degradation and peptide sequence analysis revealed that AKS(p)PVSK is the phosphorylation site sequence for the first major peak. When mapping with the amino acid sequence of neurofilament, we finally demonstrate Ser603-Pro, one of the in vivo sites in NF-M, as the major site phosphorylated by kinase FA/GSK-3α. By using the same approach, we also identified the in vivo sites of Ser502-Pro, Ser506-Pro, and Ser666-Pro as the other three major sites in NF-M phosphorylated by kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α may represent a physiologically relevant protein kinase involved in the in vivo phosphorylation of NF-M. Because Ser502, Ser506, Ser603, and Ser666 are all flanked by a carboxyl-terminal proline residue, the results provide further evidence that FA/GSK-3α may represent a proline-directed protein kinase involved in the structure-function regulation of the neuronal cytoskeletal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号