首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.  相似文献   

2.
T G Zybina 《Tsitologiia》1988,30(10):1180-1187
Differentiation sequences and further transfiguration of glycogen-rich cells during placenta development were investigated for the rat and field vole Microtus subarvalis (11-20 day gestation). The presence of glycogen is a characteristic feature of decidual cells located in the region of lateral sinusoids, as well as of metrial gland cells, secondary giant trophoblast cells and trophoblast cells in the connective zone of placenta. Glycogen-containing metrial gland cells and trophoblast cells of connective zone of placenta are found to underlie the layer of tertiary giant trophoblast cells that cover the wall of the central arteria. Thus, both maternal and embryo-derived glycogen-containing cells always accompany the tertiary giant trophoblast cells that penetrate deeply into the maternal part of placenta but do not contain glycogen. In the field vole placenta the cells of peripheral trophoblast subpopulation of the connective zone of placenta attaching to the decidua basalis are stained by PAS-reaction more intensely than deeply situated ones. These data, as well as other phenomena revealed here, show that maternal and trophoblastic cells attaching to each other in placenta contain, as a rule glycogen. Glycogen cells in rat placenta and trophoblast cells of peripheral subpopulation of connective zone of placenta are similar in many respects. In this connection, a possible protective role of glycogen-containing cells, that probably favour the co-existence of maternal and embryo-derived cells in placenta, is discussed.  相似文献   

3.
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.  相似文献   

4.
5.
Cells of the trophoblast lineage make up the epithelial compartment of the placenta, and their rapid development is essential for the establishment and maintenance of pregnancy. A diverse array of specialized trophoblast subtypes form throughout gestation and are responsible for mediating implantation, as well as promotion of blood to the implantation site, changes in maternal physiology, and nutrient and gas exchange between the fetal and maternal blood supplies. Within the last decade, targeted mutations in mice and the study of trophoblast stem cells in vitro have contributed greatly to our understanding of trophoblast lineage development. Here, we review recent insights into the molecular pathways regulating trophoblast lineage segregation, stem cell maintenance, and subtype differentiation.  相似文献   

6.
Irisin, an adipokine, regulates differentiation and phenotype in various cell types including myocytes, adipocytes, and osteoblasts. Circulating irisin concentration increases throughout human pregnancy. In pregnancy disorders such as preeclampsia and gestational diabetes mellitus, circulating irisin levels are reduced compared to healthy controls. To date, there are no data on the role and molecular function of irisin in the human placenta or its contribution to pathophysiology. Aberrant trophoblast differentiation is involved in the pathophysiology of preeclampsia. The current study aimed to assess the molecular effects of irisin on trophoblast differentiation and function. First-trimester placental explants were cultured and treated with low (10 nM) and high (50 nM) physiological doses of irisin. Treatment with irisin dose-dependently increased both in vitro placental outgrowth (on Matrigel™) and trophoblast cell-cell fusion. Adenosine monophosphate-activated protein kinase (AMPK) signaling, an important regulator of cellular energy homeostasis that is involved in trophoblast differentiation and pathology, was subsequently investigated. Here, irisin exposure induced placental AMPK activation. To determine the effects of irisin on trophoblast differentiation, two trophoblast-like cell lines, HTR-8/SVneo and BeWo, were treated with irisin and/or a specific AMPK inhibitor (Compound C). Irisin-induced AMPK phosphorylation in HTR-8/SVneo cells. Additionally, as part of the differentiation process, integrin switching from α6 to α1 occurred as well as increased invasiveness. Overall, irisin promoted differentiation in villous and extravillous cell-based models via AMPK pathway activation. These findings provide evidence that exposure to irisin promotes differentiation and improves trophoblast functions in the human placenta that are affected in abnormal placentation.  相似文献   

7.
Genetic insights into trophoblast differentiation and placental morphogenesis   总被引:12,自引:0,他引:12  
The placenta is comprised of an inner vascular network covered by an outer epithelium, called trophoblast, all designed to promote the delivery of nutrients to the fetus. Several specialized trophoblast cell subtypes arise during development to promote this function, including cells that invade the uterus to promote maternal blood flow to the implantation site, and other cells that fuse into a syncytium, expand and fold to increase the surface area for efficient transport. Mutation of many genes in mice results in embryonic mortality or fetal growth restriction due to defects in placental development. Several important principles about placental development have emerged from these studies. First, distinct molecular pathways regulate the differentiation of the various trophoblast cell subtypes. Second, trophoblast proliferation, differentiation and morphogenesis are highly regulated by interactions with adjacent cell types. Finally, the specific classes of mutant phenotypes observed in the placenta of knockout mice resemble those seen in humans that are associated with preeclampsia and intrauterine growth restriction.  相似文献   

8.
9.
The maintenance of gestational well-being requires the proper development of both the embryo and the placenta. Placental trophoblast cells are the major building blocks of the developing placenta. Abnormal trophoblast differentiation underpins placental-based pregnancy complications. However, the mechanisms that govern trophoblast differentiation remain largely unclear. Recent studies shed light on several proteins and regulators that are involved in governing trophoblast differentiation. The advancement of new tools and novel technologies, such as the human trophoblast stem cell culture system, 3D placental organoids and single-cell multi-omics, has brought incredible insights to the field. Here we review the current literature, paying particular attention to articles published between 2017 and 2019 that have promoted our understanding of human trophoblast cell differentiation and its roles in pregnancy and its complications. At the same time, we address challenges and questions arising in the field of human placental development and disease.  相似文献   

10.
Uteri taken from 25 bitches at various times during the early stages of pregnancy were studies cytologically to determine how the implantation chamber developed and how fetal-maternal relations were established. On day 13 after the end of estrus, knobs of trophoblastic syncytium formed and became wedged between cells of the uterine luminal epithelium. The syncytium quickly spread along the uterine lumen and into the mouths of the glands, dislodging and surrounding maternal cells. As invasion continued trophoblastic villi, consisting of cores of cytotrophoblast covered by a continuous layer of syncytium, penetrated deeper into the endometrium. The syncytium spread to surround maternal vessels and decidual cells. By day 26 the trophoblast had extended down to the large lacunae. Here syncytial trophoblast covering tips of the villi degenerated, leaving cytotrophoblast exposed to the necrotic zone. These cells possessed characteristics of absorbing cells. Hematomas were formed by focal necrosis of fetal and endometrial tissue at the poles of the implantation sites. Large pools of extravasated blood accumulated and red blood cells were phagocytized by surrounding trophoblastic cells. Therefore, the endotheliochorial relationship in the canine placenta appeared to be established by syncytial trophoblast invading a cellular endometrium. In the necrotic zone and hematomas, cellular trophoblast may have lost its syncytial covering, but elsewhere maternal vessels and decidual cells in the placenta were in direct contact only with syncytial trophoblast.  相似文献   

11.
12.
Peng C  Ohno T  Koh LY  Chen VT  Leung PC 《Life sciences》1999,64(12):983-994
In the present study, we examined the expression of activin receptor (ActR) mRNAs in human ovary and placenta. Primers specific for two type I and two type II activin receptors (ActR-I, ActR-IB, ActR-II, and ActR-IIB) were used in polymerase chain reaction (PCR) to amplify cDNAs prepared from granulosa-luteal cells, placental tissues and isolated trophoblast cells. PCR products with the expected sizes for ActR-I, ActR-IB, ActR-II, and ActR-IIB mRNAs were detected in freshly dissociated and 5-day cultured granulosa-luteal cells; and in trophoblast cells from both first trimester and term placentas. The identity of these PCR products were confirmed by Southern blot hybridization, as well as cloning and sequencing. These results suggest that multiple activin receptors are present in human ovary and placenta and may mediate activin function in these tissues. The demonstration of activin receptor mRNAs in granulosa-luteal and trophoblast cells further supports the notion that activin is an important local regulator in the human ovary and placenta.  相似文献   

13.
W J Krause  J H Cutts 《Acta anatomica》1985,123(3):156-171
For the first 9 days of gestation, opossum embryos float in uterine secretions, separated from maternal tissues by a shell membrane. Each embryo is part of the wall of its hollow embryonic sphere. By the 10th day of development, the embryo becomes enveloped by both the amnion and yolk-sac. The yolk-sac consists of vascular and non-vascular portions and, together with the surrounding trophectoderm (trophoblast), forms the yolk-sac placenta of the opossum: the allantois does not contribute to formation of the placenta. The vascular portion of the yolk-sac placenta establishes an intimate relationship with the uterine epithelium soon after loss of the shell membrane. The yolk-sac placenta is non-invasive. Cells of the trophoblast exhibit numerous microvilli, an apical endocytic complex and the lateral and basal cell membrane are elaborately folded. These features suggest a cell that is active in the transport of materials. Junctional complexes between cells of the trophoblast and uterine epithelium were not observed. The uterine epithelium changes from ciliated pseudostratified columnar with few infoldings of lateral and basal cell membranes, to non-ciliated simple columnar in which these membranes show elaborate infoldings. The cells show numerous inclusions and mitochondria are polarized to the basal half of the cell. These features suggest a cell that also is active in the transport of materials.  相似文献   

14.
Uterine leukocytes: key players in pregnancy   总被引:11,自引:0,他引:11  
In species with hemochorial placentation, which includes humans, mice and rats, antigen-specific T and B lymphocytes which are responsible for acquired immunity are virtually absent from the maternal-fetal interface. In contrast, non-antigen specific natural killer cells and macrophages which provide innate immunity are abundant and highly specialized. Autocrine/paracrine factors such as steroid and polypeptide hormones, prostaglandins and anti-inflammatory cytokines that are present in the uterine environment during pregnancy re-program their secretory profiles. Recent studies using transgenic mice and other approaches indicate that these environmentally modified leukocytes have major pregnancy-associated functions that include facilitation of implantation, modulation of the maternal uterine vasculature, supply of growth factors to the placenta, promotion of trophoblast differentiation and facilitation of parturition.  相似文献   

15.
16.
17.
The ERK/MAPK signaling pathway is involved in several cellular functions. Inactivation in mice of genes encoding members of this pathway is often associated with embryonic death resulting from abnormal placental development. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the removal of metabolic wastes. These exchanges take place without direct contact between the two circulations. In mice, the hematoplacental barrier consists in a triple layer of trophoblast cells and endothelial cells of the embryo. MEK1 and MEK2 are double specificity serine-threonine/tyrosine kinases responsible for the activation of ERK1 and ERK2. Mek1 inactivation results in placental anomalies due to trophoblast cell proliferation and differentiation defects leading to severe delays in the development of placenta and causing the death of the embryo. Although Mek2(-/-) mutant mice survived without any apparent phenotype, double heterozygous Mek1(+/-)Mek2(+/-) mutants die during gestation from placental malformations. Together, these data emphasize the crucial role of the ERK/MAPK cascade in the formation of extraembryonic structures.  相似文献   

18.
Cadmium (Cd) is an industrial and environmental pollutant that produces toxic effects on gametogenesis, pre- and post-implantation embryos, and the placenta. Because the effects of acute Cd intoxication on the placenta are not well understood, we investigated changes in its glycosylated components in Cd treated dams at days 4, 7, 10 and 15 of gestation using lectin histochemistry. CdCl2 was administered to pregnant rats; control animals received sterile normal saline. Placentas were processed for DBA, Con A, SBA, PNA, UEA-I, RCA-I and WGA lectin histochemistry to evaluate changes in the carbohydrate pattern of the placenta that might modify cell interactions and contribute to embryonic alterations. Lectin binding was analyzed in the yolk sac; trophoblast giant cells; trophoblast I, II and III; spongiotrophoblast cells and endovascular trophoblast cells in the chorioallantoic placenta. Our lectin binding patterns showed that Cd caused alteration of SBA and DBA labeling of trophoblast-derived cells, which suggested increased expressions of α and β GalNAc. Cd also caused decreased UEA-1 binding affinity, which indicated fewer α-L-Fuc residues in placentas of Cd treated dams. The nonreactivity in trophoblast I of the control placentas incubated with Con-A contrasted with the labeling in placentas of experimental dams, which indicated increased expression of terminal α-D-Man, and α-D-Glc residues. We found that Cd altered the reactivity of placenta to several lectins, which indicated modification of the glycotype presented by the fetal component of the placenta. We report that Cd exerts a deleterious effect on the glycosylation pattern of the placenta.  相似文献   

19.
Dynamics of genome multiplication during establishment of interrelations between the trophoblast and the glandular epithelium of endometrium was studied in the course of placenta formation in the silver fox. Endometrium response on the embryo implantation exhibits some features of inflammation. In the course of placenta formation the trophoblast gains access to the endometrial glandular epithelium zone, while the endometrial blood vessels grow the other way into the expanding trophoblast zone. The trophoblast gradually replaces the whole epithelium and part of the stroma of the endometrium, closely adjoining the endometrial vessels but not disrupting them. Cytophometric DNA measurements in the trophoblast nuclei have shown that most of the nuclei are polyploid: predominantly 4c-64c, occasionally 128c and 256c. Polyploidy of the trophoblast may result from various types of polyploidizing mitoses. Cytophotometric DNA measurements in mitotic figures have revealed mitoses with DNA amounts equal to 4c (2n), 8c (4n), and 16c (8n), which indicates that trophoblast cells in the silver fox placenta are able to enter mitosis prior to the octaploid level. Higher degrees of polyploidy in the trophoblast cells may be achieved presumably by endoreduplication. In the silver fox polyploidization of uterine grandular epithelial cells during placentation occurs until the level of 8c. Thus, the tissue-specific response of the uterus to the implanting embryo is an active proliferation and polyploidization of the glandular epithelium, rather than formation of a population of polyploid decidual cells (i.e. connective tissue cells). Using the silver fox endotheliochorial placenta as an example, a regularity has been confirmed that cells of both maternal and fetal origin are polyploid in sites of their contact in placenta, which might be of protective significance in the contact of allogenic organisms.  相似文献   

20.
This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号