首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
铜离子与乙烯受体关系研究进展   总被引:3,自引:1,他引:2  
许多年前 ,人们一直推测金属离子如锌、铜为受体感受乙烯所必需 ,但苦于没有直接证据。最近对拟南芥的生化和遗传学研究证实铜离子参与了乙烯信号的感受和转导。RAN1蛋白与酵母 CCC2蛋白和 Wilson &Menkes疾病蛋白同源 ,这些蛋白为转运铜离子的 P-型ATP酶。RAN1将铜离子整合到乙烯受体中 ,受体才能正常感受乙烯。铜离子投送可能是调节乙烯感受的重要因素  相似文献   

2.
研究了Ca2+ 对番茄(Lycopersicon esculentum Mill cv. Lichun)黄化幼苗乙烯反应的影响.通过测定不同Ca2+ 浓度条件下番茄黄化幼苗的"三重反应"、内源乙烯释放量、乙烯受体基因NEVER-RIPE(NR)表达量及胞内CaM含量的变化,结果发现,随着培养基中Ca2+ 浓度从0 mmol/L增加到3.8 mmol/L,番茄黄化幼苗的"三重反应"表型明显增强,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加;当Ca2+ 浓度由3.8 mmol/L进一步增加到10 mmol/L时,番茄黄化幼苗"三重反应"表型受到抑制,内源乙烯释放量、 NR基因的表达量及胞内CaM的含量都有所下降.因此,Ca2+ 对番茄黄化幼苗"三重反应"的影响与Ca2+ 调节内源乙烯合成和乙烯受体基因的表达有关,而且Ca2+ 可能是通过CaM含量的变化来调节乙烯作用的.  相似文献   

3.
钙与植物乙烯反应的关系研究   总被引:5,自引:0,他引:5  
研究了Ca2 对番茄 (LycopersiconesculentumMillcv.Lichun)黄化幼苗乙烯反应的影响。通过测定不同Ca2 浓度条件下番茄黄化幼苗的“三重反应”、内源乙烯释放量、乙烯受体基因NEVER_RIPE(NR)表达量及胞内CaM含量的变化 ,结果发现 ,随着培养基中Ca2 浓度从 0mmol/L增加到 3.8mmol/L ,番茄黄化幼苗的“三重反应”表型明显增强 ,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有不同程度的增加 ;当Ca2 浓度由 3.8mmol/L进一步增加到 10mmol/L时 ,番茄黄化幼苗“三重反应”表型受到抑制 ,内源乙烯释放量、NR基因的表达量及胞内CaM的含量都有所下降。因此 ,Ca2 对番茄黄化幼苗“三重反应”的影响与Ca2 调节内源乙烯合成和乙烯受体基因的表达有关 ,而且Ca2 可能是通过CaM含量的变化来调节乙烯作用的  相似文献   

4.
乙烯受体是乙烯信号转导网络的第一个转导元件,通过调控受体基因的表达,可以调节植物对乙烯的敏感性,以调控果实的成熟及花衰老进程的响应.随着人们对乙烯受体研究的深入,乙烯受体突变体及受体抑制剂在采后果实和切花保鲜上的应用已受到广泛关注.就近年来关于乙烯受体的相关研究进展进行综述,重点介绍了乙烯受体的分子调控机制及乙烯受体在...  相似文献   

5.
对近几年有关烟草乙烯受体基因研究的最新进展作简要介绍,并就今后该领域的研究方向进行探讨。已知烟草乙烯受体家族至少包括NtETR1、NtERS1、NTHK1和NTHK2等4种基因,其中NTHK1和NTHK2同源且有相似结构,两者的激酶活性与细菌双组分调节系统非常相似,激酶活性需要一些二价阳离子的参与。烟草乙烯受体在细胞内的作用位点还缺少研究。  相似文献   

6.
水稻乙烯受体类似物基因的克隆及其表达特性   总被引:4,自引:0,他引:4  
乙烯在植物的生长发育以及对逆境的反应中起着重要作用. 乙烯受体基因在拟南芥、 烟草和番茄等双子叶植物中已有一些研究, 但到目前为止还没有见到关于单子叶植物乙烯受体研究的报道. 我们从水稻中克隆了一个乙烯受体基因OSPK2, 发现它所编码的蛋白与双子叶植物的乙烯受体有所不同. OSPK2的N端较长, 其后是3个跨膜区、一个GAF结构域、一个推测的激酶结构域和接受器结构域. 虽然大多数的结构域都是保守的, 但预期的磷酸化位点His和磷酸基团接受位点Asp在OSPK2中分别被Gln和Asn取代. 这一事实说明, OSPK2可能不是以组氨酸激酶的磷酸转移方式进行作用, 而是以其他的机制, 如具有丝/苏激酶的活性. 应用RT-PCR方法对不同条件下OSPK2基因的表达进行了研究, 结果表明, OSPK2受伤害和PEG处理诱导, 但盐及ABA处理对其没有显著影响. OSPK2基因的差异表达可能反映了它在介导不同非生物逆境反应中的作用, 这与我们以前关于烟草乙烯受体的研究结果是一致的.  相似文献   

7.
乙烯受体与信号转导成员的研究进展   总被引:2,自引:0,他引:2  
综述了近几年有关乙烯受体和乙烯信号转导成员研究的最新进展,ETR1与其多基因家族的结构及在信号转导过程中的作用机理.乙烯与受体结合需要铜离子的协同作用.ETR1、CTR1、EIN2、EIN3、ERN1、ERF1等组成乙烯信号转导.  相似文献   

8.
本研究通过生物信息与分子生物学手段,对秀珍菇乙烯受体基因进行克隆,并用荧光定量PCR检测1-MCP处理前后秀珍菇乙烯受体基因的表达情况。本研究克隆到1个秀珍菇可靠的乙烯受体基因PpuETR1,该基因编码的氨基酸序列含有保守的组氨酸激酶结构域,与双孢蘑菇的组氨酸蛋白激酶感应蛋白和植物的同源乙烯受体同源。该基因在1-MCP处理后表达量受到了明显的抑制,在贮藏期间均呈下调表达,这从分子水平上说明1-MCP抑制了乙烯受体基因的表达,从而减缓了乙烯信号通路对秀珍菇成熟衰老作用。实验结果为1-MCP对秀珍菇的保鲜作用机理研究提供了一定的数据支持。  相似文献   

9.
番茄果实中乙烯与多聚半乳糖醛酸酶的关系   总被引:6,自引:0,他引:6  
乙烯与多聚半乳糖醛酸酶(PG)都是果实成熟过程中关键的调节因子.一方面,在有乙烯合成缺陷的转反义ACS番茄和乙烯感受缺陷的Nr突变体番茄果实中PG基因表达量都明显下降,PG酶活性明显降低;用外源乙烯(100 μL/L)处理绿熟期番茄果实使PG基因的表达明显增强,而1-甲基环丙烯(1-MCP,1 μL/L)处理转色期番茄果实明显抑制PG基因表达.另一方面,转反义PG基因番茄果实乙烯释放量在授粉后低于其野生型,番茄乙烯受体基因LeETR4和乙烯反应因子LeERF2基因表达量比野生种低.PG降解果胶的产物D-GA(100 mg/L)促进未熟期番茄果实中的乙烯生成和LeETR4、LeERF2基因的表达.  相似文献   

10.
以拟南芥为模式植物研究植物激素乙烯信号转导,在过去20年来取得了长足进展,并以遗传学与生物化学为基础建立了一个线性的信号转导途径模型.虽然这个模型基本上解释了乙烯信号组分参与的信号传递过程,但是,其中仍然存在若干问题亟待进一步研究.例如,上游的多个乙烯受体家族成员与CONSTITUTIVETRIPLE—RESPONSE1蛋白如何协同作用,下游的ETHYLENEINsENsITIVE2(EIN2)如何将乙烯信号传递给转录激活因子EIN3,以及是否存在其他的信号途径调控乙烯反应等.本文将着重阐述不同乙烯受体家族成员的协作对乙烯信号途径的差异性调控,植物利用多个乙烯受体感受乙烯的生物学意义,以及乙烯受体除了通过CTR1蛋白调节EIN2功能外,是否还存在其他的信号转导途径.  相似文献   

11.
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.  相似文献   

12.
Liu Q  Wen CK 《Plant physiology》2012,158(3):1193-1207
The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1((C65Y))(for ethylene response1-1), ers1-1((I62P)) (for ethylene response sensor1-1), and ers1(C65Y) are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1((C65Y)), but not ers1-1((I62P)), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1((I62P)); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1((I62P)) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1(C65Y), which implied that ETR1 and EIN4 have synergistic effects on ers1(C65Y) functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors.  相似文献   

13.
Myo-Inositol-Dependent Sodium Uptake in Ice Plant   总被引:39,自引:0,他引:39  
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.  相似文献   

14.
The tomato ethylene receptor gene family: Form and function   总被引:15,自引:0,他引:15  
Phytohormones are essential for integrating many aspects of plant development and responses to the environment. Regulation of hormonally controlled events occurs at multiple levels: synthesis, catabolism and perception (Trewavas 1983, Bradford and Trewavas 1994). At the level of perception, sensitivity to hormones can be regulated both spatially and temporally during the life cycle. An example of spatial regulation is the differential response to a hormone that occurs during organ abscission. Temporally, sensitivity of an organ to a hormone may change during maturation, as occurs during fruit ripening. In this review, we will focus on the initial event in recognition of one hormone, ethylene. The ethylene receptor was the first plant hormone receptor to be unambiguously identified. Over the last few years, great progress has been made in elucidating the genes involved in ethylene action. Nonetheless, the mechanisms of signal transduction remain to be established. Here, we will address the status of the tomato receptor gene family and the evidence that regulation of receptor gene expression can influence the response of the plant to the hormone.  相似文献   

15.
Harvista?, a sprayable formulation of 1-methylcyclopropene (1-MCP), has recently been developed for preharvest use on horticultural products, whereas SmartFresh? is a widely used 1-MCP treatment for products after harvest. The effects of Harvista? on apple fruit ripening when sprayed at different maturities and on expression patterns of ethylene biosynthesis and receptor genes during storage have been investigated. Harvista? applied to on-tree maturing apple fruit at an average starch pattern index of 2.5 resulted in a higher at-harvest firmness value compared with those treated at a starch pattern index of 1.5 and 3.5. This indicates that the timing of the Harvista? application is critical. An application of Harvista? led to better postharvest fruit firmness retention as well as reduced ethylene production. In addition, both preharvest and postharvest 1-MCP treatments resulted in contrasting responses in the expression patterns of two ethylene biosynthesis genes and in differentially suppressing effects on four ethylene receptor genes. Furthermore, the combined application of Harvista? + SmartFresh? resulted in greater fruit firmness retention and longer ethylene suppression. The expression profiles of these genes during on-tree fruit maturation prior to Harvista? application were also characterized. Different regulation patterns of receptor genes could contribute to differential effects by 1-MCP treatments. The potential roles of Harvista? to manipulate the ripening process as well as the molecular mechanism influencing 1-MCP treatment efficacy are discussed.  相似文献   

16.
The ethylene signal transduction pathway in Arabidopsis   总被引:5,自引:0,他引:5  
The gaseous hormone ethylene is an important regulator of plantgrowth and development. Using a simple response of etiolatedseedlings to ethylene as a genetic screen, genes involved inethylene signal transduction have been identified in Arabidopsis.Analysis of two of these genes that have been cloned revealsthat ethylene signalling involves a combination of a protein(ETR1) with similarity to bacterial histidine kinases and aprotein (CTR1) with similarity to Raf-1, a protein kinase involvedin multiple signalling cascades in eukaryotic cells. Severallines of investigation provide compelling evidence that ETR1encodes an ethylene receptor. For the first time there is aglimpse of the molecular circuitry underlying the signal transductionpathway for a plant hormone. Key words: Ethylene, plant growth, plant development, regulation, signal transduction, Arabidopsis  相似文献   

17.
18.
花衰老相关的乙烯信号转导基因研究进展   总被引:2,自引:0,他引:2  
乙烯在许多切花衰老过程中起着重要的调节作用,不同的植物乙烯信号转导组分在花衰老过程中有不同的转录调节特性。根据乙烯信号转导标准模式,通过调节乙烯信号转导基因表达能够调控花对乙烯的敏感性,深入研究乙烯信号转导机制;可能有多条途径可延缓切花衰老。综述了香石竹和月季等几种观赏植物在花衰老过程中乙烯受体和乙烯信号转导基因表达及特性。  相似文献   

19.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

20.
‘Tardivo’ mandarin is a mutant of ‘Comune’ Clementine with a delay in peel degreening and coloration, allowing late harvesting. In this work, we have explored if the late‐harvesting phenotype of ‘Tardivo’ mandarin is related to altered perception and sensitivity to ethylene. The peel degreening rate was examined after a single ethephon treatment or during a continuous ethylene application in fruits at two maturation stages. In general, ethylene‐induced peel degreening was considerably delayed and reduced in fruits of ‘Tardivo’, as well as the concomitant reduction of chlorophyll (Chl) and chloroplastic carotenoids, and the accumulation of chromoplastic carotenoids. Analysis of the expression of genes involved in Chl degradation, carotenoids, ABA, phenylpropanoids and ethylene biosynthesis revealed an impairment in the stimulation of most genes by ethylene in the peel of ‘Tardivo’ fruits with respect to ‘Comune’, especially after 5 days of ethylene application. Moreover, ethylene‐induced expression of two ethylene receptor genes, ETR1 and ETR2, was also reduced in mutant fruits. Expression levels of two ethylene‐responsive factors, ERF1 and ERF2, which were repressed by ethylene, were also impaired to a different extent, in fruits of both genotypes. Collectively, results suggested an altered sensitivity of the peel of ‘Tardivo’ to ethylene‐induced physiological and molecular responses, including fruit degreening and coloration processes, which may be time‐dependent since an early moderated reduction in the responses was followed by the latter inability to sustain ethylene action. These results support the involvement of ethylene in the regulation of at least some aspects of peel maturation in the non‐climacteric citrus fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号