首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li H  Roossinck MJ 《Journal of virology》2004,78(19):10582-10587
Genetic bottlenecks are stochastic events that limit genetic variation in a population and result in founding populations that can lead to genetic drift. Evidence of past genetic bottlenecks in numerous biological systems, from mammals to viruses, has been described. In this study, we used an artificial population of Cucumber mosaic virus consisting of 12 restriction enzyme marker-bearing mutants. This population was inoculated onto young leaves of tobacco plants and monitored throughout the course of systemic infection. We show here that the genetic variation in a defined population of an RNA virus is significantly, stochastically, and reproducibly reduced during the systemic infection process, providing clear evidence of a genetic bottleneck.  相似文献   

2.
The fecundity of RNA viruses can be very high. Thus, it is often assumed that viruses have large populations, and RNA virus evolution has been mostly explained using purely deterministic models. However, population bottlenecks during the virus life cycle could result in effective population numbers being much smaller than reported censuses, and random genetic drift could be important in virus evolution. A step at which population bottlenecks may be severe is host-to-host transmission. We report here an estimate of the size of the population that starts a new infection when Cucumber mosaic virus (CMV) is transmitted by the aphid Aphis gossypii, based on the segregation of two CMV genotypes in plants infected by aphids that acquired the virus from plants infected by both genotypes. Results show very small effective numbers of founders, between one and two, both in experiments in which the three-partite genome of CMV was aphid transmitted and in experiments in which a fourth RNA, CMV satellite RNA, was also transmitted. These numbers are very similar to those published for Potato virus Y, which has a monopartite genome and is transmitted by aphids according to a different mechanism than CMV. Thus, the number of genomic segments seems not to be a major determinant of the effective number of founders. Also, our results suggest that the occurrence of severe bottlenecks during horizontal transmission is general for viruses nonpersistently transmitted by aphids, indicating that random genetic drift should be considered when modeling virus evolution.  相似文献   

3.
More often than not, analyses of virus evolution have considered that virus populations are so large that evolution can be explained by purely deterministic models. However, virus populations could have much smaller effective numbers than the huge reported census numbers, and random genetic drift could be important in virus evolution. A reason for this would be population bottlenecks during the virus life cycle. Here we report a quantitative estimate of population bottlenecks during the systemic colonization of tobacco leaves by Tobacco mosaic virus (TMV). Our analysis is based on the experimental estimation of the frequency of different genotypes of TMV in the inoculated leaf, and in systemically infected leaves, of tobacco plants coinoculated with two TMV genotypes. A simple model, based on the probability that a leaf in coinoculated plants is infected by just one genotype and on the frequency of each genotype in the source, was used to estimate the effective number of founders for the populations in each leaf. Results from the analysis of three leaves per plant in plants inoculated with different combinations of three TMV genotypes yielded highly consistent estimates. Founder numbers for each leaf were small, in the order of units. This would result in effective population numbers much smaller than the census numbers and indicates that random effects due to genetic drift should be considered for understanding virus evolution within an infected plant.  相似文献   

4.
Squash (Cucurbita pepo) belongs to Cucurbitaceae family. Every year Cucurbitaceae are planted world wide. They are one of the most important economic crops. Cucurbitaceae are threatened by viruses. Many viruses damage the plants of this family. Since nine viruses have been reported on squash from Iran. In this survey, during 2002--2003, to determine the distribution of Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV) and Watermelon mosaic virus (WMV), 466 samples were collected from squash field in Tehran province. Infected plants showing symptoms such as: mosaic, yellowing, deformation, shoestring of leaves and fruit deformation and yield reduction. Distribution of CMV, ZYMV and WMV were determined by DAS-ELISA. Thepercentage of ZYMV, WMV and CMV were 35.6, 26.1 and 25.1% respectively. Triple infection (CMV+ZYMV+WMV) were found in 6.4% of samples. ZYMV were found the most frequently the viruses. This is the first report of WMV on squash in Tehran province.  相似文献   

5.
We compared historic and contemporary genetic variation in two threatened New Zealand birds (saddlebacks and robins) with disparate bottleneck histories. Saddlebacks showed massive loss of genetic variation when extirpated from the mainland, but no significant loss of variation following a severe bottleneck in the 1960s when the last population was reduced from approximately 1000 to 36 birds. Low genetic variation was probably characteristic of this isolated island population: considerably more genetic variation would exist in saddlebacks today if a mainland population had survived. In contrast to saddlebacks, contemporary robin populations showed only a small decrease in genetic variation compared with historical populations. Genetic variation in robins was probably maintained because of their superior ability to disperse and coexist with introduced predators. These results demonstrate that contemporary genetic variation may depend more greatly on the nature of the source population and its genetic past than it does on recent bottlenecks.  相似文献   

6.
Salicylic acid (SA)-induced resistance to Cucumber mosaic virus (CMV) in tobacco (Nicotiana tabacum) results from inhibition of systemic virus movement and is induced via a signal transduction pathway that also can be triggered by antimycin A, an inducer of the mitochondrial enzyme alternative oxidase (AOX). In Arabidopsis thaliana, inhibition of CMV systemic movement also is induced by SA and antimycin A. These results indicate that the mechanisms underlying induced resistance to CMV in tobacco and A. thaliana are very similar. In contrast to the situation in tobacco and A. thaliana, in squash (Cucurbita pepo), SA-induced resistance to CMV results from inhibited virus accumulation in directly inoculated tissue, most likely through inhibition of cell-to-cell movement. Furthermore, neither of the AOX inducers antimycin A or KCN induced resistance to CMV in squash. Additionally, AOX inhibitors that compromise SA-induced resistance to CMV in tobacco did not inhibit SA-induced resistance to the virus in squash. The results show that different host species may use significantly different approaches to resist infection by the same virus. These findings also imply that caution is required when attempting to apply findings on plant-virus interactions from model systems to a wider range of host species.  相似文献   

7.
Cucumber mosaic virus (CMV) systemically infects both tobacco and zucchini squash. CMV capsid protein loop mutants with single-amino-acid substitutions are unable to systemically infect squash, but they revert to a wild-type phenotype in the presence of an additional, specific single-site substitution. The D118A, T120A, D192A, and D197A loop mutants reverted to a wild-type phenotype but did so in combination with P56S, P77L, A162V, and I53F or T124I mutations, respectively. The possible effect of these compensatory mutations on other, nonsystemically infecting loop mutants was tested with the F117A mutant and found to be neutral, thus indicating a specificity to the observed changes.  相似文献   

8.
Genetic bottlenecks are important events in the genetic diversification of organisms and colonization of new ecological niches. Repeated bottlenecking of RNA viruses often leads to fitness losses due to the operation of Muller's ratchet. Herein we use vesicular stomatitis virus to determine the transmission population size which leads to fitness decreases of virus populations. Remarkably, the effective size of a genetic bottleneck associated with fitness loss is greater when the fitness of the parental population increases. For example, for starting virus populations with low fitness, population transfers of five-clone-to-five-clone passages resulted in a fitness increase. However, when a parental population with high fitness was transferred, 30-clone-to-30-clone passages were required simply to maintain fitness values.  相似文献   

9.
The deleterious effects of inbreeding have been well documented, but only recently have studies begun to explore the consequences of inbreeding for important ecological interactions. We examined the effects of inbreeding on the interaction between host and pathogen using the mixed-mating Mimulus guttatus (Scrophulariaceae) and Cucumber mosaic virus (CMV). Inbred (self) and outbred M. guttatus from two California populations (M5 and M13) were rub-inoculated with CMV and compared to sham-inoculated controls. Flower production by outbred plants in host population M5 showed little effect of the inoculation treatment, but inoculation reduced flower production of inbred plants by 12%, indicating that inbreeding reduces tolerance to CMV infection. This interaction fell short of significance, however. The effects of inbreeding and CMV inoculation on biomass in M5 varied significantly across the 15 families used in this experiment, indicating genetic variation in the effect of inbreeding on resistance or tolerance to CMV. CMV infection reduced biomass in host population M13, but there were no significant interactions between virus treatment and level of inbreeding for either flower production or biomass. Enzyme linked immunosorbent assay (ELISA) was used to detect CMV in host tissues. In both populations, mean ELISA absorbance values of inoculated plants were nearly identical for self and outcross hosts, indicating equal susceptibility to CMV. In outbred plants of population M5, flower production did not change with increasing ELISA absorbance, but in inbred plants it declined, indicating reduced tolerance to CMV infection. The results from this study suggest that pathogens may become increasingly detrimental as host populations become more inbred.  相似文献   

10.
In addition to its influence on plasmodesmal function, tobacco mosaic virus movement protein (TMV‐MP) causes an alteration in carbon metabolism in source leaves and in resource partitioning among the various plant organs. The present study was aimed at characterizing the influence of cucumber mosaic virus (CMV)‐MP on carbohydrate metabolism and transport in both tobacco and melon plants. Transgenic tobacco plants expressing the CMV‐MP had reduced levels of soluble sugars and starch in their source leaves and a significantly reduced root‐to‐shoot ratio in comparison with control plants. A novel virus‐vector system was employed to express the CMV‐coat protein (CP), the CMV‐MP or the TMV‐MP in melon plants. This set of experiments indicated that the viral MPs cause a significant elevation in the proportion of sucrose in the phloem sap collected from petioles of source leaves, whereas this sugar was at very low levels or even absent from the sap of control melon plants. The mode by which the CMV‐MP exerts its effect on phloem‐sap sugar composition is discussed in terms of possible alterations in the mechanism of phloem loading.  相似文献   

11.
Cucumber mosaic virus (CMV) is known to systemically infect Arabidopsis thaliana ecotype Columbia plants. In order to identify the host factors involved in the multiplication of CMV, we isolated an A. thaliana mutant in which the accumulation of the coat protein (CP) of CMV in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in the mutant plants was caused by a single, nuclear and recessive mutation designated cum1-1, which was located on chromosome IV. The cum1-1 mutation did not affect the multiplication of tobacco mosaic virus, turnip crinkle virus or turnip yellow mosaic virus, which belong to different taxonomic groups from CMV. Accumulation of CMV CP in the inoculated leaves of cum1-1 plants was also delayed either when CMV virion or CMV virion RNA was inoculated. On the other hand, when cum1-1 and the wild-type Col-0 protoplasts were inoculated with CMV virion RNA by electroporation, the accumulations of CMV-related RNAs and the coat protein were similar. These results suggest that the cum1-1 mutation did not affect the uncoating of CMV virion and subsequent replication in an initially infected cell but affected the spreading of CMV within an infected leaf, possibly the cell-to-cell movement of CMV in a virus-specific manner.  相似文献   

12.
Effects of host plants on resistance to bifenthrin in the silverleaf whitefly, Bemisia argentifolii Bellows & Perring, were determined by LC50 bioassay. In addition, inheritance of resistance to bifenthrin was investigated beginning with a single source of a bifenthrin-susceptible population. Overall, the resistance ratio between the bifenthrin-susceptible population and the selected bifenthrin-resistant population from the same source population was 915-fold after 1 yr in the greenhouse. Responses to bifenthrin among the susceptible and the resistant populations were changed when whiteflies were reared on three different host plants, i.e., cotton, cabbage, and squash. In the resistant populations, the LC50 value of whitefly fed on squash was increased as much as 7.5-fold, while the LC50 value of whitefly fed on cabbage was similar to cotton that served as the control plant. The host plant on which whiteflies feed appears to be an important factor in selection for resistance to bifenthrin, but these effects are crop specific. Based on an analysis using LC50 values of the reciprocal F1 cross on cotton, resistance of whitefly from a single-source whitefly population was inherited as an incompletely dominant factor. A model used to estimate loci numbers showed that resistance of whitefly to bifenthrin is probably controlled primarily by a few or a single locus. In addition, the difference in the ratio of LC50 values between males from unmated mother and males from mated mother was approximately fivefold, suggesting that insecticide resistance in whitefly males is in some way affected by mating.  相似文献   

13.
Inbreeding resulting from severe population bottlenecks may impair an individual's immune system and render it more susceptible to disease. Although a reduced immune response could threaten the survival of highly endangered species, few studies have assessed the effect of population bottlenecks on immunocompetence. We compared the counts of leucocytes and external, blood and gastrointestinal parasite loads in two populations of the endemic New Zealand robin Petroica australis to assess the immunocompetence of birds in a severely bottlenecked population relative to its more genetically diverse source population. Despite similar parasite loads in both populations, robins in the severely bottlenecked population showed lower counts of both total leucocyte and total lymphocyte numbers. When the immune system was experimentally challenged using the phytohaemagglutinin skin test, robins in the severely bottlenecked population exhibited a significantly lower immune response than the source population, suggesting that birds passing through a severe bottleneck have a compromised immunocompetence. Our results confirm that severe bottlenecks reduce the immune response of birds and highlight the need to avoid severe bottlenecks in the recovery programmes of endangered species.  相似文献   

14.
Significantly higher population densities of a squash pest beetle, Acalymma vittatum, were observed in a squash monoculture than a triculture of squash, maize, and beans. One hypothesis for such differences is that non-host plants in the triculture cause the herbivore to move more frequently resulting in higher emigration rates from the tricultures. Plant to plant movement of the beetle was studied in vegetative winter squash to evaluate if differences in components of trivial movement would generate a higher emigration rate from the triculture. Tenure times were shorter on plants in the triculture than on plants in the squash monoculture, there was no movement directionality, movement distances were greater in squash monocultures than in tricultures and were greater during July than August. In the tricultures, plant-to-plant transitions were primarily to maize from non-host plants and to beans or squash from host plants during July, but during August, movement from any plant was primarily to maize. We integrated the values of the movement components from vegetative winter squash into a simple Markov model, and found that during July, emigration was estimated to be faster from the triculture than the monoculture, supporting the hypothesis. However, in August, emigration was estimated to be slower from the triculture. In August, maize plants were tall and, by acting like a fence, greatly reduced the movement distance of beetles. The effect of the differences in emigration rate on beetle population density was greatest for small patches, indicating that emigration may be important only in small-scale production systems.  相似文献   

15.
Transgenic melon and squash containing the coat protein (CP) gene of the aphid transmissible strain WL of cucumber mosaic cucumovirus (CMV) were grown under field conditions to determine if they would assist the spread of the aphid non-transmissible strain C of CMV, possibly through heterologous encapsidation and recombination. Transgenic melon were susceptible to CMV strain C whereas transgenic squash were resistant although the latter occasionally developed chlorotic blotches on lower leaves. Transgenic squash line ZW-20, one of the parents of commercialized cultivar Freedom II, which expresses the CP genes of the aphid transmissible strains FL of zucchini yellow mosaic (ZYMV) and watermelon mosaic virus 2 (WMV 2) potyviruses was also tested. Line ZW-20 is resistant to ZYMV and WMV 2 but is susceptible to CMV. Field experiments conducted over two consecutive years showed that aphid-vectored spread of CMV strain C did not occur from any of the CMV strain C-challenge inoculated transgenic plants to any of the uninoculated CMV-susceptible non- transgenic plants. Although CMV was detected in 3% (22/764) of the uninoculated plants, several assays including ELISA, RT- PCR-RFLP, identification of CP amino acid at position 168, and aphid transmission tests demonstrated that these CMV isolates were distinct from strain C. Instead, they were non-targeted CMV isolates that came from outside the field plots. This is the first report on field experiments designed to determine the potential of transgenic plants expressing CP genes for triggering changes in virus-vector specificity. Our results indicate that transgenic plants expressing CP genes of aphid transmissible strains of CMV, ZYMV, and WMV 2 are unlikely to mediate the spread of aphid non-transmissible strains of CMV. This finding is of practical relevance because transgenic crops expressing the three CP genes are targeted for commercial release, and because CMV is economically important, has a wide host range, and is widespread worldwide.  相似文献   

16.
Genetic founder effects of a historical translocation (1965; app. 12 generations ago) of endangered softmouth trout from the only remaining indigenous population to an adjacent uninhabited river were investigated. A comparison of 15 microsatellites from contemporary samples in both the source and re-established populations indicated a very low level of genetic diversity within the two populations. Furthermore, considerable differences in estimates of variability and effective population sizes were detected between populations, but no recent bottlenecks were evident. Our data suggest that the re-established population has lost variation due to genetic drift associated with founder effects following the translocation. Accordingly, in relation to management, we suggest that the re-established population could serve as a secondary source of individuals to buffer possible extinction due to demographic events. Finally, conservation initiatives to enhance the census population size and increase levels of variability in the re-established population are proposed. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
Zucchini yellow mosaic virus (ZYMV) seriously damages cucurbits worldwide. Control of ZYMV by cross-protection has been practised for decades, but selecting useful mild viruses is time-consuming and laborious. Most attenuated potyviruses used for cross-protection do not induce hypersensitive reaction (HR) in Chenopodium quinoa, a local lesion host Chenopodium quinoa. Here, severe ZYMV TW-TN3 tagged with green fluorescent protein (GFP), designated ZG, was used for nitrous acid mutagenesis. From three trials, 11 mutants were identified from fluorescent spots without HR in inoculated C. quinoa leaves. Five mutants caused attenuated symptoms in squash plants. The genomic sequences of these five mutants revealed that most of the nonsynonymous changes were located in the HC-Pro gene. The replacement of individual mutated HC-Pros in the ZG backbone and an RNA silencing suppression (RSS) assay indicated that each mutated HC-Pro is defective in RSS function and responsible for reduced virulence. Four mutants provided high degrees of protection (84%–100%) against severe virus TW-TN3 in zucchini squash plants, with ZG 4-10 being selected for removal of the GFP tag. After removal of the GFP gene, Z 4-10 induced symptoms similar to ZG 4-10 and still provided 100% protection against TW-TN3 in squash, thus is considered not a genetically engineered mutant. Therefore, using a GFP reporter to select non-HR mutants of ZYMV from C. quinoa leaves is an efficient way to obtain beneficial mild viruses for cross-protection. This novel approach is being applied to other potyviruses.  相似文献   

18.
Genetic bottlenecks facilitate the fixation and extinction of variants in populations, and viral populations are no exception to this theory. To examine the existence of genetic bottlenecks in cell-to-cell movement of plant RNA viruses, we prepared constructs for Soil-borne wheat mosaic virus RNA2 vectors carrying two different fluorescent proteins, yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP). Coinoculation of host plant leaves with the two RNA2 vectors and the wild-type RNA1 showed separation of the two vector RNA2s, mostly within seven to nine cell-to-cell movements from individual initially coinfected cells. Our statistical analysis showed that the number of viral RNA genomes establishing infection in adjacent cells after the first cell-to-cell movement from an initially infected cell was 5.97 ± 0.22 on average and 5.02 ± 0.29 after the second cell-to-cell movement. These results indicate that plant RNA viruses may generally face narrow genetic bottlenecks in every cell-to-cell movement. Furthermore, our model suggests that, rather than suffering from fitness losses caused by the bottlenecks, the plant RNA viruses are utilizing the repeated genetic bottlenecks as an essential element of rapid selection of their adaptive variants in trans-acting genes or elements to respond to host shifting and changes in the growth conditions of the hosts.Plant RNA viruses change their genomes so rapidly that variant viruses with altered biological properties are often found after prolonged growth of infected plants or after serial mechanical inoculations (26, 33). Furthermore, inoculation of less-fit artificial mutants produces revertants or pseudo-revertants even after short infection times (12, 14). The rapid evolution of plant RNA viral genomes is achieved not only by high mutation rates due to error-prone replication by the nonproofreading viral RNA-dependent RNA polymerase (19) but also by rapid selection and strong genetic drift. Generally, narrow genetic bottlenecks facilitate the fixation and extinction of variants in populations (15), and viral populations are no exception to this theory.Plant RNA viruses are known to face many narrow genetic bottlenecks during their life cycles (23). The life cycles of most plant RNA viruses are as follows: After replicating in cells, viruses move from cell to cell through plasmodesmata, which connect the cytoplasms of adjacent cells separated by cell walls in plant tissue. Following the establishment of infection in cells and cell-to-cell movements, the viruses expand their infected regions, spreading to the veins and moving through the vascular system and infecting the plant systemically. Some plant RNA viruses are transmitted through the seeds or via mechanical injuries, but most are transmitted from plant to plant by biological vectors such as insects, nematodes, and fungi. Previous studies have found that genetic bottlenecks occur during the transfer from lower leaves to upper leaves in systemic infections of Wheat streak mosaic virus (WSMV) (11), Tobacco mosaic virus (TMV) (24), and Cucumber mosaic virus (CMV) (18) and during the transfer from one tiller to another tiller of WSMV (11). Vector transmissions were also shown to act as genetic bottlenecks for WSMV (11), CMV (1, 3), and Potato virus Y (PVY) (20). With the exception of PVY, the typical method for detecting genetic bottlenecks has been to observe the spatial separation of closely related strains or artificial synonymous mutants inoculated as mixed populations: the narrower the genetic bottleneck, the more frequently the spatial separation should be observed. Using this idea with mathematical analyses, WSMV was estimated to infect a new tiller starting with four genomes (9), TMV was estimated to infect the upper leaves starting with 10 genomes (24), and CMV was estimated to infect a new plant starting with one to two particles after aphid transmission (3). Studies of PVY using sets of host plant cultivars with or without resistance genes and mixed strains of viruses with or without resistance-breaking abilities also estimated the number of virus particles transmitted by an aphid vector to be 0.5 to 3.2 on average (20).However, genetic bottlenecks in cell-to-cell movement of viruses have not been well characterized, although these occurrences are likely (11) and have been expected to be important for understanding the life cycle and population dynamics of plant RNA viruses. The size of genetic bottlenecks in cell-to-cell movement can be referred to as “multiplicity of infection (MOI) in plant tissue colonization,” and only a recent study showing that the estimated MOI of TMV is between 6 and 1 to 2 (10) indicates the occurrence and the size of genetic bottlenecks in cell-to-cell movement of a plant RNA virus. In this paper, we also show the occurrence of narrow genetic bottlenecks during cell-to-cell movement of a plant RNA virus, Soil-borne wheat mosaic virus (SBWMV, type species of the genus Furovirus), by observing the spatial separation of RNA2 vectors carrying different fluorescent proteins, yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP). Both of the fluorescent proteins were expressed as fusion proteins to the N-terminal nuclear localization signal (NLS) peptide from Simian virus 40 (SV40) large T antigen, which enabled us to observe and count the infected cells accurately using nuclear fluorescence. Numerical data were analyzed to estimate the size of bottlenecks. We also carried out a simulation to show that, due to the narrow genetic bottlenecks, rapid selection occurs even on trans-acting elements in plant RNA virus genomes, overcoming the negative effect of complementation among adaptive and defective genomes in each intracellular population. We discuss the possible roles of the bottlenecks in the life cycle and evolution mechanisms of plant RNA viruses.  相似文献   

19.
Population bottlenecks and founder events reduce genetic diversity through stochastic processes associated with the sampling of alleles at the time of the bottleneck, and the recombination of alleles that are identical by descent. At the same time bottlenecks and founder events can structure populations through the stochastic distortion of allele frequencies. Here we undertake an empirical assessment of the impact of two independent bottlenecks of known size from a known source, and consider inference about evolutionary process in the context of simulations and theoretical expectations. We find a similar level of reduced variation in the parallel bottleneck events, with the greater impact on the population that began with the smaller number of females. The level of diversity remaining was consistent with model predictions, but only if re-growth of the population was essentially exponential and polygeny was minimal at the early stages. There was a high level of differentiation seen compared to the source population and between the two bottlenecked populations, reflecting the stochastic distortion of allele frequencies. We provide empirical support for the theoretical expectations that considerable diversity can remain following a severe bottleneck event, given rapid demographic recovery, and that populations founded from the same source can become quickly differentiated. These processes may be important during the evolution of population genetic structure for species affected by rapid changes in available habitat.  相似文献   

20.
Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号