首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asn112 is located at the active site of thermolysin, 5-8 A from the catalytic Zn2+ and catalytic residues Glu143 and His231. When Asn112 was replaced with Ala, Asp, Glu, Lys, His, and Arg by site-directed mutagenesis, the mutant enzymes N112D and N112E, in which Asn112 is replaced with Asp and Glu, respectively, were secreted as an active form into Escherichia coli culture medium, while the other four were not. In the hydrolysis of a neutral substrate N-[3-(2-furyl)acryloyl]-Gly-L-Leu amide, the kcat/Km values of N112D and N112E exhibited bell-shaped pH-dependence, as did the wild-type thermolysin (WT). The acidic pKa of N112D was 5.7 +/- 0.1, higher by 0.4 +/- 0.2 units than that of WT, suggesting that the introduced negative charge suppressed the protonation of Glu143 or Zn2+-OH. In the hydrolysis of a negatively charged substrate, N-carbobenzoxy-l-Asp-l-Phe methyl ester (ZDFM), the pH-dependence of kcat/Km of the mutants decreased with increase in pH from 5.5 to 8.5, while that of WT was bell-shaped. This difference might be explained by the electrostatic repulsion between the introduced Asp/Glu and ZDFM, suggesting that introducing ionizing residues into the active site of thermolysin might be an effective means of modifying its pH-activity profile.  相似文献   

2.
The maize β-d-glucosidase Zm-p60.1 releases active cytokinins from their storage/transport forms, and its over-expression in tobacco disrupts zeatin metabolism. The role of the active-site microenvironment in fine-tuning Zm-p60.1 substrate specificity has been explored, particularly in the W373K mutant, using site-directed random mutagenesis to investigate the influence of amino acid changes around the 373 position. Two triple (P372T/W373K/M376L and P372S/W373K/M376L) and three double mutants (P372T/W373K, P372S/W373K and W373K/M376L) were prepared. Their catalytic parameters with two artificial substrates show tight interdependence between substrate catalysis and protein structure. P372T/W373K/M376L exhibited the most significant effect on natural substrate specificity: the ratio of hydrolysis of cis-zeatin-O-β-d-glucopyranoside versus the trans-zeatin-O-β-d-glucopyranoside shifted from 1.3 in wild-type to 9.4 in favor of the cis- isomer. The P372T and M376L mutations in P372T/W373K/M376L also significantly restored the hydrolytic velocity of the W373K mutant, up to 60% of wild-type velocity with cis-zeatin-O-β-d-glucopyranoside. These findings reveal complex relationships among amino acid residues that modulate substrate specificity and show the utility of site-directed random mutagenesis for changing and/or fine-tuning enzymes. Preferential cleavage of specific isomer-conjugates and the capacity to manipulate such preferences will allow the development of powerful tools for detailed probing and fine-tuning of cytokinin metabolism in planta.  相似文献   

3.
The safener-induced maize (Zea mays L.) glutathione S-transferase, GST II (EC 2.5.1.18) and another predominant isoform, GST I, were purified from extracts of maize roots treated with the safeners R-25788 (N,N-diallyl-2-dichloroacetamide) or R-29148 (3-dichloroace-tyl-2,2,5-trimethyl-1,3-oxazolidone). The isoforms GST I and GST II are respectively a homodimer of 29-kDa (GST-29) subunits and a heterodimer of 29 and 27-kDa (GST-27) subunits, while GST I is twice as active with 1-chloro-2,4-dinitrobenzene as GST II, GST II is about seven times more active against the herbicide, alachlor. Western blotting using antisera raised against GST-29 and GST-27 showed that GST-29 is present throughout the maize plant prior to safener treatment. In contrast, GST-27 is only present in roots of untreated plants but is induced in all the major aerial organs of maize after root-drenching with safener. The amino-acid sequences of proteolytic fragments of GST-27 show that it is related to GST-29 and identical to the 27-kDa subunit of GST IV.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE di-ethylaminoethyl - FPLC fast protein liquid chromatography - GSH reduced glutathione - GST glutathione S-transferase - GST-26 26-kDa subunit of maize GST - GST-27 27-kDa subunit of maize GST - GST-29 29-kDa subunit of maize GST - R-25788 safener N,N-diallyl-2-dichloroacetamide - R-29148 safener 3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidone - RPLC reverse phase liquid chromatography We are grateful to M-M. Lay, ZENECA AG Products (formerly ICI Americas), Richmond, Calif., USA for providing [14C] R-25788. ZENECA Seeds in the UK is part of ZENECA Limited.  相似文献   

4.
Glutathione S-transferases (GSTs, EC 2.5.1.18) are a multigene family of detoxification enzymes that biotransform a wide variety of endogenous and exogenous electrophilic substrates, including herbicides. The isozyme GST I from maize exhibits significant catalytic activity for the chloroacetanilide herbicide alachlor and appears to be involved in its detoxifying process. To establish the in planta ability of GST I to detoxify from alachlor, transgenesis studies were carried out. The gene gstI-6His, which encodes for 6His-tagged GST I, was used for the construction of a binary vector suitable for genetic engineering of tobacco plants (Nicotiana tabacum). Through biolistic method transgenic tobacco plants were obtained. Integration of gstI-6His gene in transgenic tobacco plants genome was confirmed by polymerase chain reaction and Southern blot hybridization. The expression of active GST I was established by Western blot analysis, using anti-6His antibody, and by direct purification of 6-His tagged GST I on Ni-NTA agarose. Primary transformed plants harboring the gstI-6His gene were transferred to MS medium supplemented with alachlor and their phenotype was evaluated. The transgenic plants showed substantially higher tolerance to alachlor compared to non-transgenic plants in terms of root, leaves and vigorous development. These transgenic plants are potentially useful biotechnological tools for the development of phytoremediation system for the degradation of herbicide pollutants in agricultural fields.  相似文献   

5.
Endo-1,4-β-glucanase from Penicillium verruculosum (PvEGIII) belongs to family 12 of glycoside hydrolases (GH12). Analysis of the enzyme 3D model structure showed that the amino acid residue Asp98 may directly affect the pH-profile of enzyme activity since it is located at the distance of hydrogen bond formation from Glu203 that plays the role of a general acid in catalysis. The gene encoding the PvEGIII was cloned into Escherichia coli. After the deletion of two introns, a plasmid construction was obtained allowing the PvEGIII expression in E. coli. Using site-directed mutagenesis, the Asp98Asn mutant of the PvEGIII was obtained. Both the wild type and mutant PvEGIIIs were expressed in E. coli with a yield of up to 1 g/L and then isolated in a highly purified form. The enzyme specific activity against soluble carboxymethylcellulose was not changed after a single amino acid substitution. However, the pH-optimum of activity of the mutant PvEGIII was shifted from pH 4.0 to 5.1, compared to the wild type enzyme. The shift in the enzyme pH-optimum to more neutral pH was also observed on insoluble cellulose, in the process of enzymatic depigmentation of denim fabric. Similar situation featuring the effect of the Asp/Asn residue, located near the Glu catalytic residue, on the enzyme activity pH-profile has previously been described for xylanases of the GH11 family. Thus, the glycoside hydrolases belonging to the GH11 and GH12 families function by a rather similar mechanism of catalysis.  相似文献   

6.
The S2 subsite specificity of the plant protease papain has been altered to resemble that of mammalian cathepsin B by site-directed mutagenesis. On the basis of amino acid sequence alignments for papain and cathepsin B, a double mutant (Val133Ala/Ser205Glu) was produced where Val133 and Ser205 are replaced by Ala and Glu, respectively, as well as a triple mutant (Val133Ala/Val157Gly/Ser205Glu), where Val157 is also replaced by Gly. Three synthetic substrates were used for the kinetic characterization of the mutants, as well as wild-type papain and cathepsin B: CBZ-Phe-Arg-MCA, CBZ-Arg-Arg-MCA, and CBZ-Cit-Arg-MCA. The ratio of kcat/KM obtained by using CBZ-Phe-Arg-MCA as substrate over that obtained with CBZ-Arg-Arg-MCA is 8.0 for the Val133Ala/Ser205Glu variant, while the equivalent values for wild-type papain and cathepsin B are 904 and 3.6, respectively. This change in specificity has been achieved by replacing only two amino acids out of a total of 212 in papain and with little loss in overall enzyme activity. However, further replacement of Val157 by Gly as in Val133Ala/Val157Gly/Ser205Glu causes an important decrease in activity, although the enzyme still displays a cathepsin B like substrate specificity. In addition, the pH dependence of activity for the Val133Ala/Ser205Glu variant compares well with that of cathepsin B. In particular, the activity toward CBZ-Arg-Arg-MCA is modulated by a group with a pKa of 5.51, a behavior that is also encountered in the case of cathepsin B but is absent with papain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Site-directed mutagenesis can be employed to alter activity critical residues in proteins which are susceptible to chemical oxidation. Previous studies have implicated methionine 222 as a primary site for oxidative inactivation of subtilisin (Stauffer, C. E., and Etson, D. (1969) J. Biol. Chem. 244, 5333-5338). Because of uncertainties in predicting which amino acid would be the optimal substitute for methionine 222, we prepared all 19 amino acid substitutions at this site in the cloned subtilisin gene using a cassette mutagenesis method (Wells, J. A., Vasser, M., and Powers, D. P. (1985) Gene (Amst.), in press). Mutant enzymes were expressed in Bacillus subtilis and were found to vary widely in specific activity. Mutants containing nonoxidizable amino acids (i.e. Ser, Ala, and Leu) were resistant to inactivation by 1 M H2O2, whereas methionine and cysteine enzymes were rapidly inactivated. These studies demonstrate the feasibility of improving oxidative stability in proteins by site-directed mutagenesis.  相似文献   

8.
Tyr 64, hydrogen-bonded to coenzyme phosphate in Treponema denticola cystalysin, was changed to alanine by site-directed mutagenesis. Spectroscopic and kinetic properties of the Tyr 64 mutant were investigated in an effort to explore the differences in coenzyme structure and kinetic mechanism relative to those of the wild-type enzyme. The wild type displays coenzyme absorbance bands at 418 and 320 nm, previously attributed to ketoenamine and substituted aldamine, respectively. The Tyr 64 mutant exhibits absorption maxima at 412 and 325 nm. However, the fluorescence characteristics of the latter band are consistent with its assignment to the enolimine form of the Schiff base. pK(spec) values of approximately 8.3 and approximately 6.5 were observed in a pH titration of the wild-type and mutant coenzyme absorbances, respectively. Thus, Tyr 64 is probably the residue involved in the nucleophilic attack on C4' of pyridoxal 5'-phosphate (PLP) in the internal aldimine. Although the Tyr 64 mutant exhibits a lower affinity for PLP and lower turnover numbers for alpha,beta-elimination and racemization than the wild type, the pH profiles for their Kd(PLP) and kinetic parameters are very similar. Rapid scanning stopped-flow and chemical quench experiments suggest that, in contrast to the wild type, for which the rate-determining step of alpha,beta-elimination of beta-chloro-L-alanine is the release of pyruvate, the rate-determining step for the mutant in the same reaction is the formation of alpha-aminoacrylate. Altogether, these results provide new insights into the catalytic mechanism of cystalysin and highlight the functional role of Tyr 64.  相似文献   

9.
To elucidate the role of sulfhydryl groups in the enzymatic reaction of the aspartase from Escherichia coli, we used site-directed mutagenesis which showed that the enzyme was activated by replacement of Cys-430 with a tryptophan. This mutation produced functional alterations without appreciable structural change: The kcat values became 3-fold at pH 6.0; the Hill coefficient values became higher under both pH conditions; the dependence of enzyme activity on divalent metal ions increased; and hydroxylamine, a good substrate for the wild-type enzyme, proved a poor substrate for the mutant.  相似文献   

10.
The glutathione (GSH)-conjugating activity of human class Pi glutathione S-transferase (GST pi) toward 1-chloro-2,4-dinitrobenzene (CDNB) was significantly lowered by reaction with N-acetylimidazole, an O-acetylating reagent for tyrosine residues. Further, the replacement of Tyr7 in GST pi, which is conserved in all cytosolic GSTs, with phenylalanine by site-directed mutagenesis also lowered the activities toward CDNB and ethacrynic acid. The Km values of the mutant for both GSH and CDNB were almost equivalent to those of the wild type, while the Vmax of the former was about 55-fold smaller than that of the latter. Therefore, Tyr7 is considered to be an essential residue for the catalytic activity of GST pi.  相似文献   

11.
The cationic glutathione S-transferase (GST sigma) of human erythrocytes is activated when incubated with 1 mM N-ethylmaleimide or other sulfhydryl blocking agents. Other GST isoenzymes of human tissues were inhibited by these reagents under similar conditions. At higher concentrations of NEM, GST sigma was also inhibited. Dithiothreitol, 2-mercaptoethanol, and sodium borohydride also caused several fold activation of GST sigma but noe of the other human GST isoenzymes were activated by these reagents.  相似文献   

12.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

13.
Y6 and Y115 are key amino acids involved in enzyme-substrate interactions in mu-class glutathione S-transferase (GST). They provide electrophilic assistance and stabilize substrates through their hydroxyl groups. Two site-directed mutants (Y7F and Y116F) and the wild-type shrimp GSTs were expressed in Escherichia coli, and the steady-state kinetic parameters were determined using CDNB as the second substrate. The mutants were modeled based on a crystal structure of a mu-class GST to obtain further insights about the changes at the active site. The Y116F mutant had an increase in kcat contrary to Y7F compared to the wild type. Molecular modeling showed that the shrimp GST has a H108 residue that may contribute to compensate and lead to a less deleterious change when conserved tyrosine residues are mutated. This work indicates that shrimp GST is a useful model to understand the catalysis mechanisms in this critical enzyme.  相似文献   

14.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

15.
Ultraviolet difference spectroscopy of the binary complex of isozyme 4-4 of rat liver glutathione S-transferase with glutathione (GSH) and the enzyme alone or as the binary complex with the oxygen analogue, gamma-L-glutamyl-L-serylglycine (GOH), at neutral pH reveals an absorption band at 239 nm (epsilon = 5200 M-1 cm-1) that is assigned to the thiolate anion (GS-) of the bound tripeptide. Titration of this difference absorption band over the pH range 5-8 indicates that the thiol of enzyme-bound GSH has a pKa = 6.6, which is about 2.4 pK units less than that in aqueous solution and consistent with the kinetically determined pKa previously reported [Chen et al. (1988) Biochemistry 27, 647]. The observed shift in the pKa between enzyme-bound and free GSH suggests that about 3.3 kcal/mol of the intrinsic binding energy of the peptide is utilized to lower the pKa into the physiological pH range. Apparent dissociation constants for both GSH and GOH are comparable and vary by a factor of less than 2 over the same pH range. Site occupancy data and spectral band intensity reveal large extinction coefficients at 239 nm (epsilon = 5200 M-1 cm-1) and 250 nm (epsilon = 1100 M-1 cm-1) that are consistent with the existence of either a glutathione thiolate (E.GS-) or ion-paired thiolate (EH+.GS-) in the active site. The observation that GS- is likely the predominant tripeptide species bound at the active site suggested that the carboxylate analogue of GSH, gamma-L-glutamyl-(D,L-2-aminomalonyl)glycine, should bind more tightly than GSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

17.
By directed mutagenesis of the cloned Escherichia coli gor gene encoding the flavoprotein glutathione reductase, Tyr-177 (the residue corresponding to Tyr-197 in the NADPH-binding pocket of the homologous human enzyme) was changed to phenylalanine (Y177F), serine (Y177S), and glycine (Y177G). The catalytic activity of the Y177F mutant was very similar to that of the wild-type enzyme, but that of the Y177S and Y177G mutants was substantially diminished. However, all three mutants retained the ability to protect the reduced flavin from adventitious oxidation, indicating that Tyr-177 does not act as a simple "lid" on the NADPH-binding pocket and that the protection of the reduced enzyme must be due largely to burial of the isoalloxazine ring in the protein. The wild-type enzyme and Y177F mutant displayed ping-pong kinetics, but the Y177S and Y177G mutants appeared to have switched to an ordered sequential mechanism. This could be explained by supposing that the enzyme normally functions by a hybrid kinetic mechanism and that the Y177S and Y177G mutations diverted flux from the ping-pong loop favored by the wild-type enzyme to an ordered sequential loop. The necessary change in the partitioning of the common E-NADPH intermediate could be caused by a slowing of the formation of the EH2 intermediate on the ping-pong loop, or by the observed concomitant fall in the Km for glutathione favoring flux through the ordered sequential loop. In another experiment, His-439, thought to act as a proton donor/acceptor in the glutathione-binding pocket, was mutated to a glutamine residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The investigation of pH-dependence of superprecipitation reaction and ATPase activity of myometrium actomyosin in the interval of pH 5.5-8.0 has detected cupola-shaped curves with maximal activity of both processes by pH 6.5. On the basis of calculating the constants of ionization it was supposed that in the case of actomyosin ATPase imidazole groups of two histidins had an essential role in reaction of ATP hydrolysis and in superprecipitation process--imidazol group of histidine and carboxyl group of asparagin acid. The investigation of [ATP]- and [Mg2+]-dependence of superprecipitation reaction by pH 6.0, 6.5 and 7.0 has demonstrated different pH-sensitiveness of Michaelis constants and maximal speeds relatively Mg2+ and ATP for both processes. It was shown that pH-optimum of ATPase activity of myometrium actomyosin coincided with maximal affinity of actomyosin with ATP and Mg2+ while as for superprecipitation reaction the correlation between value of process by certain pH and affinity with ATP and Mg2+ was not detected.  相似文献   

19.
Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).  相似文献   

20.
The effect of pH on the main kinetic parameters of pyruvate kinase function was studied. The maximal rate of the reaction as well as the values of Km for ADP and Ki for phenylalanine depend on pH and show a well-defined extremum at pH 6.8-7.0. Spectrofluorimetric titration of pyruvate kinase results in pH dependencies of changes in the fluorescence spectra parameters (e.g., quantum yield, half-width and position of the maximum). This enabled to determine the pH regions corresponding to changes in the state of tryptophan residues. Data from the enzyme inhibition by phenylalanine suggest that acidification of the medium leads to the decrease of the catalytic activity due to the protonation of the ionogenic group of the enzyme. Within the pH range of 7.0-8.0, the decrease of the pyruvate kinase activity is due to structural shifts in the enzyme molecule, as a result of which the steric complementariness of the enzyme active center with respect to the substrate (Mg.ADP) is impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号