首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.  相似文献   

2.
Hölzer SU  Hensel M 《PloS one》2012,7(3):e33220
The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied.  相似文献   

3.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

4.
Intracellular Salmonella inhibit antigen presentation by dendritic cells   总被引:3,自引:0,他引:3  
Dendritic cells (DC) are important APCs linking innate and adaptive immunity. During analysis of the intracellular activities of Salmonella enterica in DC, we observed that viable bacteria suppress Ag-dependent T cell proliferation. This effect was dependent on the induction of inducible NO synthase by DC and on the function of virulence genes in Salmonella pathogenicity island 2 (SPI2). Intracellular activities of Salmonella did not affect the viability, Ag uptake, or maturation of DC, but resulted in reduced presentation of antigenic peptides by MHC class II molecules. Increased resistance to reinfection was observed after vaccination of mice with SPI2-deficient Salmonella compared with mice vaccinated with SPI2-proficient Salmonella, and this correlated with an increased amount of CD4(+) as well as CD8(+) T cells. Our study is the first example of interference of an intracellular bacterial pathogen with Ag presentation by DC. The subversion of DC functions is a novel strategy deployed by this pathogen to escape immune defense, colonize host organs, and persist in the infected host.  相似文献   

5.
The Salmonella pathogenicity island-2 (SPI2) is a virulence locus on the bacterial chromosome required for intracellular proliferation and systemic infection in mice. Cell culture models and a murine model of systemic infection were used to address the role of an uncharacterized SPI2 open reading frame, designated as sseA, in Salmonella virulence. A Salmonella strain with an unmarked internal deletion of sseA displayed a phenotype that was similar to an SPI2-encoded type III secretion system apparatus mutant. Moreover, SseA was required for survival and replication within epithelial cells and macrophages. Murine infection studies confirmed that the DeltasseA strain was severely attenuated for virulence. Using immunofluorescence microscopy, the virulence defect in the DeltasseA strain was attributed to an inability to translocate SPI2 effector proteins into host cells. These data demonstrate that SseA is essential for SPI2-mediated translocation of effector proteins.  相似文献   

6.
7.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

8.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

9.
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells.  相似文献   

10.
11.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

12.
Salmonella enterica serovar Typhimurium is a common facultative intracellular pathogen that causes food-borne gastroenteritis in millions of people worldwide. Intracellular survival and replication are important virulence determinants and the bacteria can be found in a variety of phagocytic and non-phagocytic cells in vivo . Invasion of host cells and intracellular survival are dependent on two type III secretion systems, T3SS1 and T3SS2, each of which translocates a distinct set of effector proteins. However, other virulence factors including ion transporters, superoxide dismutase, flagella and fimbriae are also involved in accessing and utilizing the intracellular niche.  相似文献   

13.
Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome.  相似文献   

14.
Kim CC  Falkow S 《Journal of bacteriology》2004,186(14):4694-4704
Survival and replication in the intracellular environment are critical components of the ability of Salmonella enterica serovar Typhimurium to establish systemic infection in the murine host. Intracellular survival is mediated by a number of genetic loci, including Salmonella pathogenicity island 2 (SPI2). SPI2 is a 40-kb locus encoding a type III secretion system that secretes effector molecules, which permits bacterial survival and replication in the intracellular environment of host cells. A two-component regulatory system, ssrAB, is also encoded in SPI2 and controls expression of the secretion system and effectors. While the environmental signals to which SPI2 responds in vivo are not known, activation of expression is dependent on OmpR and can be stimulated in vitro by chelation of cations or by a shift from rich to acidic minimal medium. In this work, we demonstrated that SPI2 activation is associated with OmpR in the phosphorylated form (OmpR-P). Mutations in envZ and ackA-pta, which disrupted two distinct sources of OmpR phosphorylation, indicated that SPI2 activation by chelators or a shift from rich to acidic minimal medium is largely dependent on functional EnvZ. In contrast, the PhoPQ pathway is not required for SPI2 activation in the presence of OmpR-P. As in the case of in vitro stimulation, SPI2 expression in macrophages correlates with the presence of OmpR-P. Additionally, EnvZ, but not acetyl phosphate, is required for maximal expression of SPI2 in the intracellular environment, suggesting that the in vitro SPI2 activation pathway is the same as that used in vivo.  相似文献   

15.
Type III protein secretion is a common virulence determinant in Gram-negative bacteria and the genetic information is often clustered in pathogenicity islands or on virulence plasmids. We have analyzed the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) that is indispensable for systemic disease of Salmonella enterica serotype Typhimurium (S. Typhimurium) in mice. Since the low abundance of this secretion system restricted direct analysis by proteomic approaches, several putative proteins were expressed as recombinant products and analyzed by two-dimensional electrophoresis. The map obtained for SPI2 encoded proteins was correlated to the expression pattern of S. Typhimurium. The latter was compared to the proteins induced by SsrAB, the two-component system regulating SPI2 gene expression. Our results exemplify that recombinant expression is a complementary tool for analysis of low abundant proteins or membrane proteins. This approach contributes to the characterization of these proteins by subcellular fractionation. Furthermore, we show that pulse labeling was necessary to analyze growth phase regulated SPI2 proteins that might not be otherwise detectable.  相似文献   

16.
Salmonella enterica serovar Typhimurium (S. Typhimurium) and several mutant derivatives were able to enter efficiently murine bone marrow-derived dendritic cells using mechanisms predominantly independent of the Salmonella pathogenicity island 1 type III secretion system. The levels of intracellular bacteria did not increase significantly over many hours after invasion. Using fluid endocytic tracers and other markers, S. Typhimurium-containing vacuoles (SCVs) were physically distinguishable from early endocytic compartments. Fifty to eighty per cent of SCVs harbouring wild-type S. Typhimurium or aroA, invH and ssaV mutant derivatives were associated with late endosome markers. In contrast, S. Typhimurium sifA was shown to escape the SCVs into the cytosol of infected dendritic cells. S. Typhimurium aroC sifA was more efficient than S. Typhimurium aroC in delivering a eukaryotic promoter-driven green fluorescent protein reporter gene for expression in dendritic cells. In contrast, S. Typhimurium aroC sifA did not detectably increase the efficiency of MHC class I presentation of the model antigen ovalbumin to T cells compared to a similar aroC derivative. Mice infected with the S. Typhimurium aroC sifA expressing ovalbumin did not develop detectably enhanced levels of cytotoxic T cell or interferon-gamma production compared to S. Typhimurium aroC derivatives.  相似文献   

17.
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.  相似文献   

18.
Two large virulence loci encoding type III secretion systems are present on the chromosome of Salmonella typhimurium. Salmonella pathogenicity island 2 (SPI2) is important for the survival of S. typhimurium in host organs and forms an insertion of about 40 kb at the tRNA(Val) gene. However, several indications suggested that SPI2 was not the result of a single event of horizontal gene transfer. We characterized the portion of SPI2 towards the 30 cs boundary and performed mutational analysis to investigate the contribution of this region to S. enterica virulence. This analysis indicates that SPI2 may be composed of at least two different genetic elements. About 15 kb of the 40 kb of SPI2 contain genes without a significant contribution to systemic infections in the model of murine salmonellosis. Our study allowed us to define genes in SPI2 important for virulence further and indicated that this locus has a complex mosaic structure.  相似文献   

19.
Taking possession: biogenesis of the Salmonella-containing vacuole   总被引:7,自引:1,他引:6  
The Gram-negative pathogen Salmonella enterica can survive and replicate within a variety of mammalian cells. Regardless of the cell type, internalized bacteria survive and replicate within the Salmonella -containing vacuole, the biogenesis of which is dependent on bacterially encoded virulence factors. In particular, Type III secretion systems translocate bacterial effector proteins into the eukaryotic cell where they can specifically interact with a variety of targets. Salmonella has two distinct Type III secretion systems that are believed to have completely different functions. The SPI2 system is induced intracellularly and is required for intracellular survival in macrophages; it plays no role in invasion but is categorized as being required for Salmonella -containing vacuole biogenesis. In contrast, the SPI1 Type III secretion system is induced extracellularly and is essential for invasion of nonphagocytic cells. Its role in post-invasion processes has not been well studied. Recent studies indicate that Salmonella -containing vacuole biogenesis may be more dependent on SPI1 than previously believed. Other non-SPI2 virulence factors and the host cell itself may play critical roles in determining the intracellular environment of this facultative intracellular pathogen. In this review we discuss the recent advances in determining the mechanisms by which Salmonella regulate Salmonella -containing vacuole biogenesis and the implications of these findings.  相似文献   

20.
The facultative intracellular pathogen Salmonella enterica has evolved strategies to modify its fate inside host cells. One key virulence factor for the intracellular pathogenesis is the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2). We have previously described SPI2-encoded SseF and SseG as effector proteins that are translocated by intracellular Salmonella . Detailed analysis of the subcellular localization of SseF and SseG within the host cell indicated that these effector proteins are associated with endosomal membranes as well as with microtubules. Specific association with microtubules was observed after translocation by intracellular Salmonella as well as after expression by transfection vectors. In epithelial cells infected with Salmonella , both SseF and SseG are required for the aggregation of endosomal compartments along microtubules and to induce the formation of massive bundles of microtubules. These observations demonstrate that SPI2 effectors interfere with the microtubule cytoskeleton and suggest that microtubule-dependent host cell functions such as vesicle transport or organelle positioning are altered by intracellular Salmonella .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号