首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This article features a novel technique for measuring the spatial distribution of metabolites, such as ATP, glucose, and lactate, in rapidly frozen tissue. Concentration values are obtained in absolute terms and with a spatial resolution of single-cell dimension. The method is based on enzymatic reactions that link the metabolite of interest to luciferase with subsequent light emission. Using a specific array, cryosections are brought into contact with the enzymes in a well-defined, reproducible way inducing a distribution of light across the section with an intensity that is proportional to the metabolite concentration. The emitted light can be visualized through a microscope and an imaging photon counting system, and the respective image can be transferred to a computer for image analysis. Measurements in spherical cell aggregates with central necrosis demonstrate a close correlation between the distribution of ATP and of cellular viability at a microregional level. Similarly, ATP and glucose are correlated with the geometrical arrangement of more viable and more necrotic tissue regions in human melanomas xenografted in nude mice. Lactate did not show such a structure-related distribution in these tumours. Structure-related distributions of ATP, glucose, and lactate are found in cervix tumours of patients. In contrast to the heterogeneous distributions in tumours, the distribution patterns were much more homogeneous in normal tissues. Regional differences were present, but were much more gradual than in malignancies. This was illustrated for heart muscle where ATP concentrations were found that agreed with data in the literature, and that showed a decrease in periventricular areas.Presented as Histochemical Journal Lecture by W. Mueller-Klieser at the Annual Meeting of the Histochemistry Section of the Royal Microscopical Society in London on 6 January 1992.  相似文献   

2.
Four rat embryo fibroblast (REF) cell lines with defined oncogenic transformation were used to study the relationship between tumorigenic conversion, metabolism, and development of cell death in a 3D spheroid system. Rat1 (spontaneously immortalized) and M1 (myc-transfected) fibroblasts represent early nontumorigenic transformation stages, whereas Rat1-T1 (T24Ha-ras-transfected Rat1) and MR1 (myc/T24Ha-ras-co-transfected REF) cells express a highly tumorigenic phenotype. Localized ATP, glucose, and lactate concentrations in spheroid median sections were determined by imaging bioluminescence. ATP concentrations were low in the nonproliferating Rat1 aggregates despite sufficient oxygen and glucose availability and lack of lactate accumulation. In MR1 spheroids, a 50% decrease in central ATP preceded the development of central necrosis at a spheroid diameter of around 800 micrometer. In contrast, the histomorphological emergence of cell death at a diameter of around 500 micrometer in Rat1-T1 spheroids coincided with an initial steep drop in ATP. Concomitantly, reduction in central glucose and increase in lactate before cell death were recorded in MR1 but not in Rat1-T1 spheroids. As shown earlier, myc transfection confers a considerable resistance to hypoxia of MR1 cells in the center of spheroids, which is reflected by their capability to maintain cell integrity and ATP content in a hypoxic environment. The data obtained suggest that small alterations in the genotype of tumor cell lines, such as differences in the immortalization process, lead to substantial differences in morphological structure, metabolism, occurrence of cell death, and tolerance to hypoxia in spheroid culture.  相似文献   

3.
The cellular function of the intrinsic prion protein (PrPc) remains largely unknown. In the present study PrPc expression was investigated in multicellular prostate tumor spheroids and was correlated to the intracellular redox state as evaluated using the fluorescent dye 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA). In small tumor spheroids (diameter 100 +/- 20 microm) reactive oxygen species (ROS) levels were increased as compared with large (diameter 250 +/- 50 microm) spheroids. ROS generation was mediated by the mitochondrial respiratory chain and a NADPH oxidaselike enzyme, because carbonylcyanide-m-chlorophenylhydrazone (CCCP), rotenone, and diphenylene iodonium chloride (DPI) significantly reduced ROS levels. The elevated ROS were correlated to an increased expression of PrPc, Cu/Zn superoxide dismutase (SOD-1), and catalase in small as compared with large spheroids. In large tumor spheroids, PrPc was predominantly expressed in the peripheral cell layers and colocalized with SOD-1 and catalase. Raising intracellular ROS in large tumor spheroids by hydrogen peroxide, menadione, buthionine sulfoximine (BSO), and incubation in glutamine-reduced medium increased PrPc expression. In small spheroids PrPc was downregulated after incubation with the radical scavengers dehydroascorbate (DHA) and vitamin E. Our data indicate that PrPc expression in tumor spheroids is related to the intracellular redox state and may participate in antioxidative defense.  相似文献   

4.
Objectives: Multicellular tumour spheroids (MTS) provide an important tool for study of the microscopic properties of solid tumours and their responses to therapy. Thus, observation of large‐scale volume oscillations in MTS, reported several years ago by two independent groups ( 1 , 2 ), in our opinion represent a remarkable discovery, particularly if this could promote careful investigation of the possible occurrence of volume oscillations of tumours ‘in vivo’. Materials and methods: Because of high background noise, quantitative analysis of properties of observed oscillations has not been possible in previous studies. Such an analysis can be now performed, thanks to a recently proposed approach, based on formalism of phenomenological universalities (PUN). Results: Results have provided unambiguous confirmation of the existence of MTS volume oscillations, and quantitative evaluation of their properties, for two tumour cell lines. Proof is based not only on quality of fitting of the experimental datasets, but also on determination of well‐defined values of frequency and amplitude of the oscillations for each line investigated, which would not be consistent with random fluctuation. Conclusions: Biological mechanisms, which can be directly responsible for observed oscillations, are proposed, which relates also to recent work on related topics. Further investigations, both at experimental and at modelling levels, are also suggested. Finally, from a methodological point of view, results obtained represent further confirmation of applicability and usefulness of the PUN approach.  相似文献   

5.
Cells in the inner region of multicellular spheroids markedly reduce their oxygen consumption rate, presumably in response to their stressful microenvironment. To determine the mechanism behind this metabolic adaptation, we have investigated relative mitochondrial mass and mitochondrial function in cells isolated from different regions of tumor spheroids by using a combination of mitochondrial-specific fluorescent stains and flow cytometric analysis. Uptake of rhodamine 123 (R123) is driven by the mitochondrial membrane potential and thus reflects mitochondrial activity. Uptake of 10-nonyl-acridine orange (NAO) reflects total mitochondrial mass independently of activity because this compound binds to cardiolipin in the inner mitochondrial membrane. NAO fluorescence per unit cell volume only decreased 10–20% for cells from the inner spheroid region compared with those near the surface. There was greater than a twofold reduction in R123 fluorescence in the inner region cells, however. Thus, tumor cells in spheroids alter their rate of respiration predominately by downregulating mitochondrial function as opposed to degradation of mitochondria. There was a correlation between R123 staining per unit cell volume and the growth fraction of the cells from spheroids, but not for monolayer cultures. We also show a linear correlation between R123 staining and the rate of oxygen consumption for both monolayer- and spheroid-derived cells. After separating the inner region cells from the spheroid and replating them in monolayer culture, the R123 uptake recovered to normal levels prior to entry of the cells into S-phase. This reduction in mitochondrial function in quiescent cells from spheroids can explain the long period required for these cells to re-enter the cell cycle and may have important implications for the regulation of tumor cell oxygenation in vivo. J. Cell. Physiol. 176:138–149, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    Intrinsic expression of the multidrug resistance (MDR) transporter P-glycoprotein (Pgp) may be regulated by reactive oxygen species (ROS). A transient expression of Pgp was observed during the growth of multicellular tumor spheroids. Maximum Pgp expression occurred in tumor spheroids with a high percentage of quiescent, Ki-67-negative cells, elevated glutathione levels, increased expression of the cyclin-dependent kinase inhibitors p27Kip1 and p21WAF-1 as well as reduced ROS levels and minor activity of the mitogen-activated kinase (MAPK) members c-Jun amino-terminal kinase (JNK), extracellular signal-regulated kinase ERK1,2, and p38 MAPK. Raising intracellular ROS by depletion of glutathione with buthionine sulfoximine (BSO) or glutamine starvation resulted in down-regulation of Pgp and p27Kip1, whereas ERK1,2 and JNK were activated. Down-regulation of Pgp was furthermore observed with low concentrations of hydrogen peroxide and epidermal growth factor, indicating that ROS may regulate Pgp expression. The down-regulation of Pgp following BSO treatment was abolished by agents interfering with receptor tyrosine kinase signaling pathways, i.e. the protein kinase C inhibitors bisindolylmaleimide I (BIM-1) and Ro-31-8220, the p21ras farnesyl protein transferase inhibitor III, the c-Raf inhibitor ZM 336372 and PD98059, which inhibits ERK1,2 activation. ROS involved as second messengers in receptor tyrosine kinase signaling pathways may act as negative regulators of Pgp expression.  相似文献   

    7.
    The effects of cell cycle inhibition on the expression of the multidrug resistance transporter P-glycoprotein (P-gp) as well as of the cyclin-dependent kinase (CDK) inhibitors p27(Kip1) and p21(WAF-1) were investigated in DU-145 prostate tumor spheroids. With increasing spheroid size the number of cells in the G0/G1 phase augmented, whereas the number of cells in the G2/M phase and the S phase of the cell cycle declined. The number of G0/G1 cells was elevated after incubation with either mimosine, staurosporine or serum-free medium. Mitomycin C and roscovitine increased the number of S phase cells. Roscovitine additionally increased cells in the G2/M phase. Incubation in serum-free medium upregulated p21(WAF-1), p27(Kip1) and P-gp. Mimosine treatment resulted in upregulation of p27(Kip1) and P-gp, whereas p21(WAF-1) remained unchanged. Upon roscovitine treatment p27(Kip1) and p21(WAF-1) were downregulated, whereas P-gp was unaltered. Mitomycin C treatment resulted in downregulation of p27(Kip1) and p21(WAF-1); no significant change in P-gp levels was observed. Staurosporine induced upregulation of p21(WAF-1) whereas p27(Kip1) remained unaltered. P-gp was downregulated upon staurosporine treatment, which was owing to an elevation of intracellular reactive oxygen species by this compound. It is concluded that upregulation of P-gp in G0/G1 phase cells requires coexpression of the CDK inhibitor p27(Kip1) but not the CDK inhibitor p21(WAF-1).  相似文献   

    8.
    MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.  相似文献   

    9.
    Summary In order to gain a better understanding of the interaction between immunotoxins and tumor cells at the level of three-dimensional tumor mass, we evaluated the cell kill effects of monoclonal antimelanoma-antibody/ricin-A-chain immunotoxin (ITN) on melanoma cells in multicellular tumor spheroids (MTS) as well as the penetration of ITN into MTS. For Minor melanoma cells in monolayer the ITN exerted cytotoxic effects after as little as 1 h of exposure. Increasing exposure time resulted in progressive increases in cytotoxic activity. In contrast, the cell kill effects of ITN were markedly delayed and reduced when Minor cells were in MTS. The ITN cytotoxic effects on the melanoma MTS were more than 100 fold less than those in monolayer. Patterns of ITN-induced cytotoxicities for Minor and for another melanoma cell line, DND-1A, were comparable. The native ricin A was more active against PC-10 squamous lung cancer cells than Minor cells, whereas the ITN was more cytotoxic against Minor cells than PC-10 cells, thus exhibiting selectivity. An autoradiographic study revealed time-dependent penetration of radiolabeled ITN from the surface of Minor MTS into the core. Incubation for 1 h resulted in the penetration of ITN into only the two or three outer layers of the Minor MTS, and low grain counts. Prolonged exposure resulted in inhomogeneous penetration of ITN into almost the entire melanoma MTS. Penetration of ITN into PC-10 MTS was extremely poor. The reduced cytotoxicity of ITN on melanoma cells in MTS as compared to cells grown in monolayer appears to correlate with its inhomogeneous distribution in the MTS. The delayed cytotoxicity of ITN is also consistent with its slow penetration into the core of the MTS.  相似文献   

    10.
    11.
    Summary We have examined the MGH-U1 human bladder carcinoma cell line and 12 primary bladder carcinoma biopsies for their ability to form spheroids in suspension culture and in multiwell dishes. MGH-U1 cells formed tightly packed spheroids with a necrotic center and viable rim whereas three sublines formed loose aggregates only. Spheroids formed from as few as 100 MGU-U1 cells placed into multiwells. MGH-U1 cells derived from spheroids formed new spheroids more rapidly and consistently than cells derived from monolayer culture. Spheroid diameter increased at a rapid rate of ∼100 μm/d in multiwell dishes, and necrosis occurred only in spheroids of diameter >1 mm. Spheroids placed in spinner culture at a higher concentration (∼1.5 spheroids/ml) grew more slowly and developed necrosis at smaller diameters. The width of the viable rim of spheroids grown in spinner culture was maintained at ∼190 μm over a wide range of spheroid diameters (400 to 1000 μm). Sequential trypsinization of spheroids, which stripped layers of cells from the spheroids, demonstrated no difference in the plating efficiency of cells derived from varying depths into the spheroid. Only one of the 12 primary bladder biopsy specimens demonstrated an ability to form spheroids. This biopsy, designated HB-10, formed spheroids that grew linearly over 40 d, formed colonies in methylcellulose culture and grew as xenografts in immune-deprived mice. These studies characterize the MGH-U1 spheroids that are useful in vitro models to study the effects of various treatments for solid tumors and demonstrate the limited capacity of cells from primary human bladder biopsies to form spheroids. Supported in part by a grant from the National Cancer Institute of Canada and by grant CA29526 NCI through the National Bladder Cancer Project, U.S.A.  相似文献   

    12.
    Bioluminescence imaging (BLI) is a highly sensitive tool for visualizing tumors, neoplastic development, metastatic spread, and response to therapy. Although BLI has engendered much excitement due to its apparent simplicity and ease of implementation, few rigorous studies have been presented to validate the measurements. Here, we characterize the nature of bioluminescence output from mice bearing subcutaneous luciferase-expressing tumors over a 4-week period. Following intraperitoneal or direct intratumoral administration of luciferin substrate, there was a highly dynamic kinetic profile of light emission. Although bioluminescence was subject to variability, strong correlations (r >.8, p <.001) between caliper measured tumor volumes and peak light signal, area under light signal curve and light emission at specific time points were determined. Moreover, the profile of tumor growth, as monitored with bioluminescence, closely resembled that for caliper measurements. The study shows that despite the dynamic and variable nature of bioluminescence, where appropriate experimental precautions are taken, single time point BLI may be useful for noninvasive, high-throughput, quantitative assessment of tumor burden.  相似文献   

    13.
    14.
    Misonidazole has been shown to bind selectively to hypoxic cells in tissue culture and to cells which are presumed to be chronically hypoxic in EMT6 spheroids and tumors. Thus it has considerable potential as a marker of hypoxic cells in vivo. To further evaluate this potential EMT6/Ed spheroids were used to quantitate misonidazole binding under conditions which resulted in hypoxic fractions between 0 and 1. Hypoxic fractions were quantitated using radiation survival curves. A doubling of the oxygen in the gas phase to 40% was required to fully oxygenate all chronically hypoxic cells. The patterns of binding of 14C-labeled misonidazole determined by autoradiography were consistent with the regions of radiobiological hypoxia as predicted by oxygen diffusion theory. The overall uptake of 3H-labeled misonidazole by spheroids correlated well with the hypoxic fraction, although binding to aerobic cells and necrotic tissue contributed appreciably to the total label in the spheroids. It is concluded that misonidazole is an excellent marker of hypoxia in EMT6/Ed spheroids at the microscopic level, and the total amount bound per spheroid provides a potentially useful measure of the hypoxic fraction.  相似文献   

    15.
    To generate multicellular tumor spheroids (MTS) based on human breast adenocarcinoma MCF-7 cells and to study them as a novel in vitro model for anticancer drug screening, a technique for cell microencapsulation in biocompatible alginate-chitosan microcapsules has been used in this study. Using the MTS based on the MCF-7 cells methotrexate (MTX) cytotoxicity has been investigated. A set of MTS with an average size of 150, 200 and 300 μm was prepared as a function of cultivation time. Cell viability was evaluated after MTS incubation in cultivation medium containing various MTX concentrations (1, 2, 10, 50 and 100 nM) for 48 h. MTS were shown to be markedly more resistant to MTX than the monolayer culture. The increase of the spheroid size was in correlation with the enhanced MTS resistance to MTX. Thus, at 100 nM MTX a number of viable cells in MTS with the size of 300 μm was 2.5-fold higher than that in the monolayer culture. It is suggested that the cells microencapsulated into MTS can better mimic cell behavior in small solid tumors compared to the monolayer culture. In the future MTS could be proposed as a novel in vitro model for anticancer drug screening.  相似文献   

    16.
    The present work aimed (1) to evaluate ATP content in saliva by the bioluminescent luciferin-luciferase method, (2) to evaluate the relationships between ATP content, bacterial count and epithelial cell numbers in saliva, (3) to study the effect of two different antiseptics (peroxidase system producing hypothiocyanite and chlorhexidine) on the salivary biomass. In 45 young adults, the salivary ATP content ranged from 8 to 1515 nM. Salivary ATP content was significantly and directly correlated to bacterial count and epithelial cell numbers (Spearman-Rank correlation, P< or =0.001). Regression analysis allowed the inference of a mean epithelial cell and bacterial ATP content of 152.7 fg and 8.3 fg per cell, respectively. The salivary ATP content decreased significantly to 38. 8+/-12.3 per cent (mean+/-SEM, N=6) of its initial value after a 30-min incubation in the presence of a peroxidase system producing hypothiocyanite (OSCN(-)). Chlorhexidine (CHX) reduced salivary ATP content to 52.0+/-16.7 per cent. OSCN(-) did not affect the transformed logarithm of bacterial count but CHX reduced it from 7. 02+/-0.26 to 0.52+/-0.33. No effect of OSCN(-) was seen on the ratio of epithelial cell viability while CHX reduced it from 46.7+/-5.1 to 3.9+/-1.1 per cent. It is concluded that the combination of the evaluations of the ATP content and cell numbers in saliva can provide reliable data about the effects of oral antiseptics on salivary biomass.  相似文献   

    17.
    EMT6 mammary sarcoma cells were grown in vitro as multicellular spheroids to model for the heterogeneity of microenvironments and structural changes which develop in many tumors, including micrometastases. Spheroids of 700-900 micron diameter were implanted into and recovered at different times from the peritoneal cavities of sensitized or nonsensitized allogeneic and syngeneic mice. The colony forming efficiency of spheroid tumor cells recovered at 24 and 48 h from sensitized allogeneic mice was markedly decreased as compared with those from nonsensitized allogeneic or syngeneic animals. These recovered spheroids were extensively infiltrated by both lymphocytes and macrophages, which ultrastructurally had very close membrane associations with tumor cells. Host cells recovered from spheroids exhibited cytotoxic activity in an in vitro 51Cr release assay. Thus, multicellular spheroids in vivo provide a unique experimental model to study the functional capacity of host cells within a spheroical tumor. Although lacking the stroma and the vasculature of in vivo solid tumors, this model does have many similarities to in vivo tumors and is thus suitable for studying the tumor cell-host cell interactions within the tumor microenvironment. In addition, the system offers the potential for quantitative study of the effects of treatment modalities on tumor cell-host cell interactions.  相似文献   

    18.
    19.
    Multicellular spheroids were grown from cells derived directly from a human melanoma xenograft propagated in athymic mice. The histological appearance of the spheroids was similar to that of the parent xenograft. The spheroids were heated in culture medium (42.5-44.5 degrees C); growth delay and single cell survival measured in soft agar were used as end points. There was a good correlation between the results obtained with these two end points, indicating that growth delay depended mainly on cell survival. Large spheroids (200 +/- 12 microns in diameter) were found to be more heat sensitive than small ones (100 +/- 5 microns in diameter), probably because the physiological conditions in large spheroids were more favorable for cell inactivation. The cells were more resistant when heated as spheroids than as single cells. This effect was not a secondary effect of differences in cell-cycle distribution. Spheroids were also found to be more heat resistant than xenografted tumors. In the tumors, heat treatment caused vascular damage which resulted in delayed cell death due to hypoxia and/or nutrient deficiency. It is concluded that spheroids seem well suited for studies of primary heat-induced cytotoxic effects. However, they appear not to mirror the complex heat response of tumors since that response also includes secondary effects, related to heat-induced reduced perfusion.  相似文献   

    20.
    In vivo bioluminescence imaging (BLI) has the advantages of high sensitivity and low background. By counting the number of photons emitted from a specimen, BLI can quantify biological events such as tumour growth, gene expression and drug response. The intensities and kinetics of the BL signal are affected by many factors and may confound the quantitative results acquired from consecutive imaging sessions or different specimens. We used three different mouse models of tumours to examine whether anaesthetics, positioning and tumour growth may affect the consistency of the BL signal. The results showed that BLI signal could be affected by different anaesthetics and repetitive positioning. Using the same anaesthetics produced consistent peak times, while other factors were held constant. However, as the tumours grew the peak times shifted and the time course of BL signals had different shapes, depending on the positioning of the mice. The data indicate that a carefully designed BLI experiment is required to generate optimal and consistent results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号