首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal instability occurs early in the development of cancer and may represent an important step in promoting the multiple genetic changes required for the initiation and/or progression of the disease. Telomere erosion is one of the factors that contribute to chromosome instability through end-to-end chromosome fusions entering BFB (breakage-fusion-bridge) cycles. Uncapped chromosomes with short dysfunctional telomeres represent an initiating substrate for both pre- and post-replicative joining, which leads to unstable chromosome rearrangements prone to bridge at mitotic anaphase. Resolution of chromatin bridge intermediates is likely to contribute greatly to the generation of segmental chromosome amplification events, unbalanced chromosome rearrangements and whole chromosome aneuploidy. Accordingly, telomere-driven instability generates highly unstable genomes that could promote cell immortalization and the acquisition of a tumour phenotype.  相似文献   

2.
We have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments we show that the major proportion (93%) of small-colony (sigma) mutants studied have chromosome 11 rearrangements (the chromosome containing the thymidine kinase gene) while large-colony (lambda) mutants do not have detectable chromosome rearrangements. In addition, we find among the chromosome abnormalities in sigma mutants a significant proportion (34%) with dicentric chromosomes involving chromosome 11. These potentially unstable chromosome rearrangements may help to explain the karyotypic instability and heterogeneity among chromosome 11 aberrations previously noted in sigma mutants when they are analyzed later in their clonal history.  相似文献   

3.
J. K. Lim 《Genetics》1979,93(3):681-701
During a study of delayed mutations, an unstable X chromosome (Uc) was detected. Spontaneous X-linked recessive lethal mutations were detected in 34 of 993 sperm sampled from 50 males carrying this chromosome. All but three of the 34 lethals originated as clusters in three of the 50 males Cytogenetic and complementation analyses revealed 14 intrachromosomal rearrangements: ten inversions, two reverse repeats, one deficiency and one transposition. Eight of the 14 rearrangements have one break in the 6F1-2 doublet and two rearrangements have a break in 6F1-5 of the X chromosome. The remaining four rearrangements have in addition to the aberrations a lethal point mutation between 6F1 and 6F5. Though each of the lethal lines was established from a single lethal-bearing female, chromosome polymorphism is evident in 17 of the 18 lines having rearrangements, with certain aberrations recurring in several lines. The lethal mutations revert frequently to the nonlethal state, and cytological evidence indicates that more than one mutational event may occur at the unstable locus of the chromosome during one generation. Two lethal lines had more than one type of chromosome rearrangement sharing a common breakpoint. These observations are consistent with the view that the instability of the Uc lines is caused by a transposable element capable of site-specific chromosome breaks and perpetual generation of mutations. The mutagenic and genetic properties of transposable elements can be related to the two-mutation theory of KNUDSON (1971) for cancer initiation.  相似文献   

4.
Telomeres play a vital role in protecting the ends of chromosomes and preventing chromosome fusion. The failure of cancer cells to properly maintain telomeres can be an important source of the chromosome instability involved in cancer cell progression. Telomere loss results in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large deletions. These B/F/B cycles end primarily when the unstable chromosome acquires a new telomere by translocation of the ends of other chromosomes. Many of these translocations are nonreciprocal, resulting in the loss of the telomere from the donor chromosome, providing a mechanism for transfer of instability from one chromosome to another until a chromosome acquires a telomere by a mechanism other than nonreciprocal translocation. B/F/B cycles can also result in other forms of chromosome rearrangements, including double-minute chromosomes and large duplications. Thus, the loss of a single telomere can result in instability in multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.  相似文献   

5.
Ionizing radiation can induce chromosome instability that is transmitted over many generations after irradiation in the progeny of surviving cells, but it remains unclear why this instability can be transmitted to the progeny. To acquire knowledge about the transmissible nature of genomic instability, we transferred an irradiated human chromosome into unirradiated mouse recipient cells by microcell fusion and examined the stability of the transferred human chromosome in the microcell hybrids. The transferred chromosome was stable in all six microcell hybrids in which an unirradiated human chromosome had been introduced. In contrast, the transferred chromosome was unstable in four out of five microcell hybrids in which an irradiated human chromosome had been introduced. The aberrations included changes in the irradiated chromosome itself and rearrangements with recipient mouse chromosomes. Thus the present study demonstrates that genomic instability can be transmitted to the progeny of unirradiated cells by a chromosome exposed to ionizing radiation, implying that the instability is caused by the irradiated chromosome itself and also that the instability is induced by the nontargeted effect of radiation.  相似文献   

6.
Bystander effects in radiation-induced genomic instability   总被引:4,自引:0,他引:4  
Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.  相似文献   

7.
The functionality of the sexual cycle in the heterothallic pathogen Phytophthora ramorum, causal agent of Sudden Oak Death, has recently been demonstrated. Sexual reproduction could create genotypic variation and increase the pathogen's ability to adapt to other host plants or changing environments. Genetic characterization using co-dominant microsatellite markers and flow cytometry of single-oospore progeny of crosses between a European A1 isolate and North American or European A2 isolates revealed a considerable number of non-Mendelian inheritance events. This includes inheritance of more than two alleles at a locus and non-inheritance of alleles from one parent at another locus. The progenies were mitotically unstable: zoospore and hyphal tip derivatives of the progenies showed genotypic rearrangements and phenotypic variation. Flow cytometry confirmed variation and instability in DNA content of the single-oospore progenies. This indicates that single-oospore progenies not only display aberrant genomic and phenotypic variation due to meiotic irregularities, but also extra variation as a result of post-meiotic genomic rearrangements.  相似文献   

8.
T R Laverty  J K Lim 《Genetics》1982,101(3-4):461-476
In this study, we show that at least one lethal mutation at the 3F-4A region of the X chromosome can generate an array of chromosome rearrangements, all with one chromosome break in the 3F-4A region. The mutation at 3F-4A (secondary mutation) was detected in an X chromosome carrying a reverse mutation of an unstable lethal mutation, which was mapped in the 6F1-2 doublet (primary mutation). The primary lethal mutation at 6F1-2 had occurred in an unstable chromosome (Uc) described previously (LIM 1979). Prior to reversion, the fF1-2 doublet was normal and stable, as was the 3F-4A region in the X chromosome carrying the primary lethal mutation. The disappearance of the instability having a set of genetic properties at one region (6F1-2) accompanied by its appearance elsewhere in the chromosome (3F-4A) implies that a transposition of the destabilizing element took place. The mutant at 3F-4A and other secondary mutants exhibited all but one (reinversion of an inversion to the normal sequence) of the eight properties of the primary lethal mutations. These observations support the view that a transposable destabilizing element is responsible for the hypermutability observed in the unstable chromosome and its derivatives.  相似文献   

9.

Background  

The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces.  相似文献   

10.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal, dominantly inherited neurodegenerative disease caused by an unstable CAG trinucleotide repeat expansion in the ataxin-1 gene located on chromosome 6p22-p23. The expanded CAG repeat is unstable during transmission, and a variation in the CAG repeat length has been found in different tissues, including sperm samples from affected males. In order further to examine the mitotic and meiotic instability of the (CAG)n stretch we have performed single sperm and low-copy genome analysis in SCA1 patients and asymptomatic carriers. A pronounced variation in the size of the expanded allele was found in sperm cells and peripheral blood leucocytes, with a higher degree of instability seen in the sperm cells, where an allele with 50 repeat units was contracted in 11.8%, further expanded in 63.5% and unchanged in 24.6% of the single sperm analysed. We found a low instability of the normal alleles; the normal alleles from the individuals carrying a CAG repeat expansion were significantly more unstable than the normal alleles from the control individuals (P<0.001), indicating an interallelic interaction between the expanded and the normal alleles. Received: 8 June 1998 / Accepted: 10 September 1998  相似文献   

11.
Summary A family of unstable mutations at the cut locus in Drosophila melanogaster was obtained under the conditions of hybrid dysgenesis (Gerasimova 1981, 1982). The in situ hybridization experiments have shown that, in the original unstable ct MR2 mutation, the 7B region of the X chromosome (where cut is located) contains a mobile dispersed genetic element, mdg4. All other unstable ct mutations derived from ct MR2 including visible and lethal alleles and unstable ct + reversions, also contain mdg4 in the 7B region. The X chromosomes of the parent strain (wild type) do not contain mdg4 at all. All stable revertants derived from ct MR2, from other unstable ct mutations, or from ct lethals lost mdg4 from the 7B region. The ct MR2 X chromosome does not contain P-elements, although a few copies are present in the autosomes. The instability of the ct MR2./ct MR2 strain remained at a high level for 50 generations (1.5 years) and then rapidly decreased. A new cross with an MRh12/Cy strain (originally used for dysgenesis induction and containing a number of P-elements) increased the instability to a level exceeding the original one. The data strongly suggest that unstable ct mutations in our system are induced by transpositions of mdg4, possibly activated by P-elements.  相似文献   

12.
Influences of array size and homogeneity on minisatellite mutation.   总被引:8,自引:0,他引:8       下载免费PDF全文
Unstable minisatellites display high frequencies of spontaneous gain and loss of repeats in the human germline. Most length changes arise through complex recombination events including intra-allelic duplications/deletions and inter-allelic transfers of repeats. Definition of the factors modulating instability requires both measurement of mutation rate and detailed analysis of mutant structures at the level of individual alleles. We have measured mutation rates in sperm for a wide range of alleles of the highly unstable human minisatellite CEB1. Instability varies by three orders of magnitude between alleles and increases steadily with the size of the tandem array. Structural analysis of mutant molecules derived from six alleles revealed that it is the rate of intra-allelic rearrangements which increases with array size and that intra-allelic duplication events tend to cluster within homogeneous segments of alleles; both phenomena resemble features of trinucleotide repeat instability. In contrast, inter-allelic transfers occur at a fairly constant rate, irrespective of array length, and show a mild polarity towards one end of the minisatellite, suggesting the possible influence of flanking DNA on these conversion-like events.  相似文献   

13.
We previously reported that a single DNA double-strand break (DSB) near a telomere in mouse embryonic stem cells can result in chromosome instability. We have observed this same type of instability as a result of spontaneous telomere loss in human tumor cell lines, suggesting that a deficiency in the repair of DSBs near telomeres has a role in chromosome instability in human cancer. We have now investigated the frequency of the chromosome instability resulting from DSBs near telomeres in the EJ-30 human bladder carcinoma cell line to determine whether subtelomeric regions are sensitive to DSBs, as previously reported in yeast. These studies involved determining the frequency of large deletions, chromosome rearrangements, and chromosome instability resulting from I-SceI endonuclease-induced DSBs at interstitial and telomeric sites. As an internal control, we also analyzed the frequency of small deletions, which have been shown to be the most common type of mutation resulting from I-SceI-induced DSBs at interstitial sites. The results demonstrate that although the frequency of small deletions is similar at interstitial and telomeric DSBs, the frequency of large deletions and chromosome rearrangements is much greater at telomeric DSBs. DSB-induced chromosome rearrangements at telomeric sites also resulted in prolonged periods of chromosome instability. Telomeric regions in mammalian cells are therefore highly sensitive to DSBs, suggesting that spontaneous or ionizing radiation-induced DSBs at these locations may be responsible for many of the chromosome rearrangements that are associated with human cancer.  相似文献   

14.
We have characterized molecularly several derivatives of the TE-like element Dp(2:2)GYL of Drosophila melanogaster. This highly unstable mutation occurred in a dysgenic cross involving the 23.5 MRF chromosome, and represents an inverted insertional duplication of approximately 130 polytene bands of the paternal 2L, at 50AB of the right arm of the maternal 2R. The instability of this mutation is characterized by deletion of some of duplicated material, by the induction of rearrangements in its vicinity and by the transposition of parts of the original element. We have found that the mobile element hobo is present at , or very near, the breakpoints of all GYL derivatives analysed, demonstrating that hobo is not only active in dysgenic crosses, but also that it can promote genetic instability reminiscent of transposable elements (TE).  相似文献   

15.
Meyerson M  Pellman D 《Cell》2011,144(1):9-10
A report in this issue describes "chromothripsis," a new mechanism for genetic instability in cancer cells. Chromothripsis appears to be a cataclysmic event in which a single chromosome is fragmented and then reassembled. The phenomenon raises important questions of how chromosome rearrangements can be confined to defined genome segments.  相似文献   

16.
Cancers have a clonal origin, yet their chromosomes and genes are non-clonal or heterogeneous due to an inherent genomic instability. However, the cause of this genomic instability is still debated. One theory postulates that mutations in genes that are involved in DNA repair and in chromosome segregation are the primary causes of this instability. But there are neither consistent correlations nor is there functional proof for the mutation theory. Here we propose aneuploidy, an abnormal number of chromosomes, as the primary cause of the genomic instability of neoplastic and preneoplastic cells. Aneuploidy destabilizes the karyotype and thus the species, independent of mutation, because it corrupts highly conserved teams of proteins that segregate, synthesize and repair chromosomes. Likewise it destabilizes genes. The theory explains 12 of 12 specific features of genomic instability: (1) Mutagenic and non-mutagenic carcinogens induce genomic instability via aneuploidy. (2) Aneuploidy coincides and segregates with preneoplastic and neoplastic genomic instability. (3) Phenotypes of genomically unstable cells change and even revert at high rates, compared to those of diploid cells, via aneuploidy-catalyzed chromosome rearrangements. (4) Idiosyncratic features of cancers, like immortality and drug-resistance, derive from subspecies within the 'polyphyletic' diversity of individual cancers. (5) Instability is proportional to the degree of aneuploidy. (6) Multilateral chromosomal and genetic instabilities typically coincide, because aneuploidy corrupts multiple targets simultaneously. (7) Gene mutation is common, but neither consistent nor clonal in cancer cells as predicted by the aneuploidy theory. (8) Cancers fall into a near-diploid (2 N) class of low instability, a near 1.5 N class of high instability, or a near 3 N class of very high instability, because aneuploid fitness is maximized either by minimally unstable karyotypes or by maximally unstable, but adaptable karyotypes. (9) Dominant phenotypes, because of aneuploid genotypes. (10) Uncertain developmental phenotypes of Down and other aneuploidy syndromes, because supply-sensitive, diploid programs are destabilized by products from aneuploid genes supplied at abnormal concentrations; the maternal age-bias for Down's would reflect age-dependent defects of the spindle apparatus of oocytes. (11) Non-selective phenotypes, e.g., metastasis, because of linkage with selective phenotypes on the same chromosomes. (12) The target, induction of genomic instability, is several 1000-fold bigger than gene mutation, because it is entire chromosomes. The mutation theory explains only a few of these features. We conclude that the transition of stable diploid to unstable aneuploid cell species is the primary cause of preneoplastic and neoplastic genomic instability and of cancer, and that mutations are secondary.  相似文献   

17.
Delayed chromosomal instability induced by DNA damage.   总被引:16,自引:4,他引:12       下载免费PDF全文
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability.  相似文献   

18.
J G Ault 《Génome》1992,35(5):855-863
The types and frequencies of spontaneous chromosome rearrangements caused by hybrid dysgenesis were studied in a second chromosome autosome of Drosophila melanogaster. This second chromosome, being an SD chromosome, had two important advantages over other autosomes for this study: (i) it had the two inversions characteristic of a standard SD-72 chromosome type, which distinguished it from its homolog in polytene chromosome spreads, and (ii) because of the meiotic drive associated with the segregation distorter system, it was preferentially transmitted to the next generation. The chromosome mutation frequency of this chromosome (given the name SDKona-2) was 8.3 and 11.7% in the F2 and F3 generations, respectively. The types of new chromosome rearrangements observed in the first four generations included paracentric inversions, pericentric inversions, duplications, deletions, reciprocal translocations (involving the third chromosome), and transpositions. Small paracentric inversions were the most common type of new rearrangement. Later, over 35 generations, some of these new rearrangements changed, either by becoming more complex or by being replaced with yet another new chromosome rearrangement. Duplications were unstable and were replaced by paracentric inversions whose breakpoints were on either side of the duplication. Transpositions arose both from a single multibreak event and from a series of two-break events.  相似文献   

19.
The suitability of yeast artificial chromosome vectors (YACs) for cloning human Y chromosome tandemly repeated DNA sequences has been investigated. Clones containing DYZ3 or DYZ5 sequences were found in libraries at about the frequency anticipated on the basis of their abundance in the genome, but clones containing DYZ1 sequences were under-represented and the three clones examined contained junctions between DYZ1 and DYZ2. One DYZ3 clone was quite stable and had a long-range structure corresponding to genomic DNA. All other clones had long-range structures which either did not correspond to genomic DNA, or were too unstable to allow a simple comparison. The effects of the transformation process and host genotype on YAC structural stability were investigated. Gross structural rearrangements were often associated with re-transformation of yeast by a YAC. rad1-deficient yeast strains showed levels of instability similar to wild-type for all YAC clones tested. In rad52-deficient strains, DYZ5 containing YACs were as unstable as in the wild-type host, but DYZ1/DYZ2 or DYZ3 containing YACs were more stable. Thus the use of rad52 hosts for future library construction is recommended, but some sequences will still be unstable.  相似文献   

20.
Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号