首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Rat liver catalase mRNA was translated in a rabbit reticulocyte lysates and wheat germ cell-free system in the presence or absence of hemin and/or a translational inhibitor prepared from reticulocytes, liver cells, and wheat germs. Failure to add hemin to the lysates, or the addition of a hemin-regulated translational inhibitor (HRI) to the hemin-supplemented lysates caused a repressed translation. A preparation of inhibitor from rat liver showed activity similar to that of HRI for this translating system. The translation repression by rat liver inhibitor was reversed by eIF-2 (initiation factor) or GTP, but ATP enhanced the repression. The translation of catalase mRNA in the wheat germ system was not affected by the addition of hemin. An inhibitor prepared from wheat germ extracts, as well as the rat liver inhibitor, markedly decreased the rate of translation. eIF-2, GTP, and ATP behaved in the manner described above. Catalase synthesis in a cell-free system derived from rat liver (using endogenous mRNA) was not influenced by either hemin or the inhibitor. The possibilities are discussed that the synthesis of catalase in liver cells is controlled by a translational inhibitor at the level of chain initiation, and that the formation of the inhibitor from its inactive proinhibitor is regulated by the amount of heme.  相似文献   

7.
8.
Rats were injected with a single or repeated doses of hemin intraperitoneally, and the effect on liver catalase [EC 1.11.1.6] was studied. A single administration of hemin caused a reduction in the concentration of liver catalase, both in enzymatic activity and in catalase protein determined immunochemically. The reduction occurred a few hours after the hemin injection, and is probably due to stimulated degradation. Disappearance of radioactivity from liver catalase prelabelled with [14C]leucine was enhanced following the administration of hemin. No evidence for a repression in vivo incorporation of [14C]leucine and [3H]sigma-aminolevulinic acid into liver catalase was obtained with hemin-treated rats. When the hemin was given repeatedly at 12-h intervals, the level of liver catalase decreased considerably. However, the impairment in catalase-synthesizing activity of liver cells of rats thus treated was rather slight, when examined in a cell-free system. Some differences were noted between the results in the present study and those in previous investigations with Sedormid-treated rats.  相似文献   

9.
10.
Hydrogen peroxide plays a major role in the pathomechanism of diabetes mellitus and its main regulator is enzyme catalase.

The blood catalase and the C111T polymorphism in exon 9 was examined in type 1, type 2 and gestational diabetes mellitus.

Compared to the control group (104.7 ± 18.5 MU/l) significantly decreased (p < 0.001) blood catalase activities were detected in type 2 (71.2 ± 14.6 MU/l), gestational (68.5 ± 12.2 MU/l) diabetes mellitus and without change in type 1 (102.5 ± 26.9 MU/l). The blood catalase decreased (p = 0.043) with age for type 2 diabetics and did not change (p>0.063) for type 1, gestational diabetic patients and controls. Blood catalase showed a weak association with hemoglobin A1c for type 1 diabetic patients (r = 0.181, increasing).

The mutant T allele was increased in type 1 and gestational diabetes mellitus, and CT+TT genotypes showed decreased blood catalase activity for type 1 and increased activities for type 2 diabetic patients.

The C111T polymorphism may implicate a very weak effect on blood catalase activity in different types of diabetes mellitus.  相似文献   

11.
Reactive oxygen species have been involved in the pathophysiology of puromycin aminonucleoside (PAN)-nephrosis. The role of H2O2 in these rats may be studied modulating the amount or activity of catalase, which breakdowns H2O2 to water and oxygen. To explore the role of H2O2 in this experimental model, we studied the effect of the in vivo catalase inhibiton with 3-amino-1,2,4-triazole (ATZ) on the course of PAN-nephrosis. Four groups of rats were studied: control rats (CT group), PAN-injected rats (PAN group), ATZ-injected rats (ATZ group), and ATZ- and PAN-injected rats (ATZPAN group). Rats were placed in metabolic cages to collect 24 h urine along the study, ATZ (1 g/kg) was given 24 h before PAN injection (75 mg/kg), and the proteinuria was measured on days 0, 2, 4, 6, 8, and 10. Proteinuria started before (day 4) and was significantly higher on days 6, 8, and 10 in the ATZPAN group than in the PAN group. On day 10, hypercholesterolemia was significantly higher in the ATZPAN group than in the PAN group. These data indicate that the in vivo catalase inhibition magnifies PAN-nephrosis, suggesting that H2O2 is produced in vivo and involved in the renal damage in this experimental disease.  相似文献   

12.
13.
Hydrogen peroxide plays a major role in the pathomechanism of diabetes mellitus and its main regulator is enzyme catalase. The blood catalase and the C111T polymorphism in exon 9 was examined in type 1, type 2 and gestational diabetes mellitus. Compared to the control group (104.7 +/- 18.5 MU/l) significantly decreased (p < 0.001) blood catalase activities were detected in type 2 (71.2 +/- 14.6 MU/l), gestational (68.5 +/- 12.2 MU/l) diabetes mellitus and without change in type 1 (102.5 +/- 26.9 MU/l). The blood catalase decreased (p = 0.043) with age for type 2 diabetics and did not change (p>0.063) for type 1, gestational diabetic patients and controls. Blood catalase showed a weak association with hemoglobin A1c for type 1 diabetic patients (r = 0.181, increasing). The mutant T allele was increased in type 1 and gestational diabetes mellitus, and CT+TT genotypes showed decreased blood catalase activity for type 1 and increased activities for type 2 diabetic patients. The C111T polymorphism may implicate a very weak effect on blood catalase activity in different types of diabetes mellitus.  相似文献   

14.
15.
16.
Effect of heme on Bacteroides distasonis catalase and aerotolerance   总被引:4,自引:1,他引:3       下载免费PDF全文
Parallel increases in intracellular catalase activity and resistance to extracellular H2O2 and to hyperbaric O2 toxicity were observed when Bacteroides distasonis VPI 4243 (ATCC 8503, type strain) was grown in either complex or defined medium containing graded amounts of hemin. Virtually all of the cells with high catalase activity (greater than 200 U/mg) remained viable upon exposure at 37 degrees C to 100-lb/in2 O2 on agar surfaces for 1 h, whereas low-catalase cells (less than 10 U/mg) lost 1.2 log units of viable cells during that treatment. Upon exposure to 500 microM H2O2, high-catalase cells lost 0.4 log units of the initial viable colonies during the same period in which low-catalase cells lost 3 log units of viable cells. The superoxide dismutase activity was the same in each test culture. These data support the role of intracellular catalase in protecting B. distasonis from oxidative damage resulting from hyperbaric oxygenation or H2O2 exposure. Catalase activity elicited by adding hemin to cells grown previously in medium lacking hemin was inhibited only 40% by prior incubation of the cells with chloramphenicol (30 micrograms/ml) and only 22% with rifampin (5 micrograms/ml). A model which is consistent with these data involves the production of an apocatalase in cells grown in low-hemin medium. Addition of hemin to the cells would result in a rapid chloramphenicolor rifampin-insensitive stimulation of catalase activity followed by further de novo biosynthesis of catalase.  相似文献   

17.
18.
19.
20.
Native bovine liver catalase [EC 1.11.1.6] and catalase acetylated with N-acetylimidazole (AI) both combined with sodium dodecyl sulfate (SDS) to form catalase-SDS complexes. The differences between native and acetylated catalase bound to SDS were investigated as regards enzymatic activity, absorption spectra, ORD and CD, sedimentation velocity and fluorescence spectra. It was found that the binding of SDS with both catalases depended on incubation time and SDS concentration, and that the acetylation of catalase had some protective effect on the denaturation of the molecule by SDS, which may be ascribed to a reduction of ionic interaction between SDS and the protein on acetylation. The native catalase was found to split into three smaller components on incubation with 1% SDS for 96 hr, whereas the acetylated catalase split into two smaller components. These smaller components were isolated by gel filtration through Sephadex G-100. The isolated components has estimated molecular weights of 60,000, 30,000, aide. It seemed likely that the modification occurred stepwise. Approximately 26% of the carboxyl groups of fibrinogen was modified finally. The modified fibrinogen had no interaction with cationic detergent, and did not form any complex with the detergent. In dilute acid, fibrinogen was observed to show only a slight interaction with cationic detergent. It is probable that the exposed and ionized carboxyl groups are essential for the formation of a complex between fibrinogen and cationic detergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号