首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang  Rong  Wei  Li  Fu  Qing-Qing  Wang  Hua  You  Hua  Yu  Hua-Rong 《Neurochemical research》2016,41(7):1818-1830
Neurochemical Research - This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against hydrogen peroxide (H2O2) induced damage in human...  相似文献   

2.
Oxidative stress mediates the cell damage in several ailments including neurodegenerative conditions. Ocimum sanctum is widely used in Indian ayurvedic medications to cure various ailments. The present study was carried out to investigate the antioxidant activity and neuroprotective effects of hydroalcoholic extract of O. sanctum (OSE) on hydrogen peroxide (H2O2)-induced oxidative challenge in SH-SY5Y human neuronal cells. The extract exhibited strong antioxidant activity against DPPH, 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical and hydroxyl radicals with IC50 values of 395 ± 16.2, 241 ± 11.5 and 188.6 ± 12.2 μg/ml respectively, which could be due to high amount of polyphenols and flavonoids. The observed data demonstrates 41.5 % cell survival with 100 μM H2O2 challenge for 24 h, which was restored to 73 % by pre-treatment with OSE for 2 h. It also decreased the lactate dehydrogenase leakage and preserved the cellular morphology. Similarly OSE inhibited lipid peroxidation, DNA damage, reactive oxygen species generation and depolarization of mitochondrial membrane. The extract restored superoxide dismutase and catalase enzyme/protein levels and further downregulated HSP-70 over-expression. These findings suggest that OSE ameliorates H2O2 induced neuronal damage via its antioxidant defence mechanism and might be used to treat oxidative stress mediated neuronal disorders.  相似文献   

3.
Neurochemical Research - Neurodegenerative diseases (ND) affect around a billion people worldwide. Oxidative stress plays a critical role in the activation of neuronal death mechanisms, implicated...  相似文献   

4.
目的观察热量限制培养条件下,SH-SY5Y细胞抗氧化应激损伤的能力。方法建立过氧化氢诱导的SH-SY5Y细胞损伤模型。体外培养SH-SY5Y细胞,分为对照组、损伤组(50、100、250、500、1 000μmol/L H2O2)、低糖组(2 g/L)、低糖+损伤组,进行细胞形态观察、测定各组细胞的噻唑蓝(MTT)代谢率、乳酸脱氢酶(LDH)漏出率。结果与对照组比较,(50、100、250、500、1 000)μmol/L H2O2损伤1 h后MTT代谢率测定细胞活力,50μmol/L组与对照组比较差异无统计学意义(P〉0.05);其他组与对照组比较,随着H2O2浓度的增加,细胞活力呈递减趋势,差异具有显著性(P〈0.01);选定250μmol/L H2O2组为损伤应激源。用低糖预处理细胞24 h,给与250μmol/L H2O2损伤1 h后测定MTT代谢率显示,与对照组比较,损伤组活力明显下降,低糖组活力上升(P〈0.01);与损伤组比较,低糖+损伤组活力明显上升(p〈0.01);继续培养至7 h发现,与对照组比较,低糖组活力上升(P〈0.01);与损伤组比较,低糖+损伤组活力明显上升(P〈0.01)。进一步检测LDH漏出率显示,损伤1 h后结果显示,与对照组比较,损伤组漏出率明显增加(P〈0.05),低糖组漏出率稍有减少(P〉0.05);与损伤组比较,低糖+损伤组漏出率明显减少(P〈0.01);继续培养7h显示,低糖7h组与低糖1 h组比较,漏出稍有增多(P〉0.05),低糖+损伤组7 h组与低糖+损伤组1 h比较漏出率稍有增加(P〈0.05);细胞形态学观察显示,未加损伤之前,低糖组的细胞形态,与对照组比较无明显改变。加入损伤药物1h后的细胞形态与对照组比较无明显改变。加入损伤药物7 h后的细胞形态,低糖组和对照组细胞突起伸展良好细长,损伤组可见细胞数目明显减少,死细胞多,突起回缩,细胞明显变圆,贴壁性不好,透光性差。结论热量限制能提高神经细胞的抗氧化应激能力,增加细胞生存率,降低死亡率。  相似文献   

5.
Neurochemical Research - Parkinson’s disease (PD) is a prevalent, progressive, neurodegenerative disorder with no known cure. Oxidative stress has been found to play a significant role in its...  相似文献   

6.
7.
Cellular and Molecular Neurobiology - Extensive applications of ZnO NPs (zinc oxide nanoparticles) in daily life have created concern about their biotoxicity. Zinc oxide nanoparticles induce...  相似文献   

8.
Neurochemical Research - Mitochondria are the major site of ATP production in mammalian cells. Furthermore, these organelles are a source and a target of reactive oxygen species (ROS), such as...  相似文献   

9.
过度氧化应激是诱发许多神经退变病的重要因素。叠氮钠(NaN3)是线粒体有氧呼吸链细胞色素c氧化酶(COX)的特异性抑制剂,过氧化氢(H2O2)释放氧自由基造成氧化损伤,两者都可以用于氧化应激情况下神经元损伤模型的建立。硫氧还蛋白还原酶(thioredoxin reductase,TR)特异性的还原氧化型的硫氧还蛋白(thioredoxin,TRx),调节细胞中氧化还原的平衡。现以不同浓度NaN3或H2O2,处理人神经母细胞瘤细胞(SH-SY5Y细胞),建立损伤模型。通过MTT法、形态学方法检测SH-SY5Y细胞损伤程度。同时,通过Western blot定量法、免疫细胞化学法,检测损伤的SH-SY5Y细胞中TR含量的改变,观察TR在胞内的分布。实验表明,NaN3、H2O2,均以浓度依赖方式损伤SH-SY5Y细胞;TR分布于SH-SY5Y细胞的胞浆,表明TR是一种分泌蛋白,损伤后分布无明显变化。但一定浓度的NaN3作用后3h,胞内TR水平显著降低,即神经系统内呼吸链受损可抑制TR的表达,为神经退变病的防治提供了新的思路。  相似文献   

10.
An increase in oxidative stress is a key factor responsible for neurotoxicity induction and cell death leading to neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. Plant phenolics exert diverse bioactivities i.e., antioxidant, anti-inflammatory, and neuroprotective effects. Herein, phenolic compounds, namely protocatechuic aldehyde (PCA) constituents of Hydnophytum formicarum Jack. including vanillic acid (VA) and trans-ferulic acid (FA) found in Spilanthes acmella Murr., were explored for anti-neurodegenerative properties using an in vitro model of oxidative stress-induced neuroblastoma SH-SY5Y cells. Exposure of the neuronal cells with H2O2 resulted in the decrease of cell viability, but increasing in the level of reactive oxygen species (ROS) together with morphological changes and inducing cellular apoptosis. SH-SY5Y cells pretreated with 5 µM of PCA, VA, and FA were able to attenuate cell death caused by H2O2-induced toxicity, as well as decreased ROS level and apoptotic cells after 24 h of treatment. Pretreated SH-SY5Y cells with phenolic compounds also helped to upregulate H2O2-induced depletion of the expressions of sirtuin-1 (SIRT1) and forkhead box O (FoxO) 3a as well as induce the levels of antioxidant (superoxide dismutase (SOD) 2 and catalase) and antiapoptotic B-cell lymphoma 2 (Bcl-2) proteins. The findings suggest that these phenolics might be promising compounds against neurodegeneration.  相似文献   

11.
Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Ugonin K, a flavonoid isolated from the rhizomes of Helminthostachys zeylanica, possesses potent antioxidant property. In this study, we investigate the neuroprotective effects of ugonin K on hydrogen peroxide (H2O2)-induced apoptosis in SH-SY5Y cells. Incubation of SH-SY5Y cells with H2O2 for 24 h induced cell death measured with MTT assay. Hoechst 33258 staining confirmed that the reduced cell viability by H2O2 was due to apoptosis. In addition, H2O2 increased the expression of 17-kDa cleaved fragment of caspase-3 which could be reversed by pretreatment with ugonin K. Pretreatment with ugonin K attenuated H2O2-induced cell death in a dose-dependent manner. Neuroprotective effect of ugonin K was abolished by ERK and PI3K inhibitors. Pretreatment with JNK kinase and p38 MAPK inhibitors had no effect on ugonin K-mediated protection against H2O2-induced apoptosis. Western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt (pS473) antibodies showed that ugonin K increased both ERK1/2 and Akt phosphorylation. These results suggest that ugonin K by activation of ERK1/2 and PI3K/Akt signal pathways protects SH-SY5Y cells from H2O2-induced apoptosis.  相似文献   

12.
Wu  Yanping  Xu  Han  Cao  Xuefang  Liu  Rongrong  Tang  Li  Zeng  Zhonghua  Li  Weifen 《Probiotics and antimicrobial proteins》2020,12(2):649-656

Probiotics have always been considered as a supplementary therapy for many diseases especially gut disorders. The absorption and barrier function of the gut play a vital role in the maintenance of body homeostasis. This study was to investigate the protective effects of Bacillus amyloliquefaciens SC06 (Ba) on H2O2-induced oxidative stress on intestinal porcine epithelial cells (IPEC-1) based on the level of gene expression. We demonstrated that Ba was a safe probiotic strain in the first place. Results showed that treatment with H2O2 significantly increased the mRNA expression of absorptive transporters glucose transporter 2 (GLUT2), Ala/Ser/Cys/Thr transporter 1 (ASCT1), and ASCT2 compared with the control group. Meanwhile, oxidative stress induced a significant improvement in the mRNA expression of occludin (OCLN) and caspase-3, and remarkably inhibited the expression of L-type amino acid transporter 1 (LAT1) or B cell lymphoma-2 (Bcl-2), respectively. Pretreatment with Ba dramatically reversed the disturbance induced by oxidative stress on the mRNA expression of ASCT1, ASCT2, and OCLN, which also significantly prevented H2O2-inhibited LAT1 and Bcl-2 mRNA expression. However, Ba failed to exert any significant protective effect on GLUT2 and caspase-3 mRNA expression. We concluded that pretreatment with Ba could alleviate the damage caused by oxidative stress to a certain extent and conferred a protective effect to the intestine.

  相似文献   

13.
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.  相似文献   

14.
Hydrogen peroxide (H2O2), a major reactive oxygen species produced during oxidative stress, has been implicated in the pathophysiology of various neurodegenerative conditions. Cyperus rotundus is a traditional medicinal herb that has recently found applications in food and confectionary industries. In the current study, the neuroprotective effects of Cyperus rotundus rhizome extract (CRE) through its antioxidant and anti-apoptotic machinery to attenuate H2O2-induced cell damage on human neuroblastoma SH-SY5Y cells have been explored. The results obtained demonstrate that pretreatment of cells with CRE for 2 h before administration of H2O2 for 24 h ameliorates the cytotoxicity induced by H2O2 as evidenced by MTT and LDH assays. CRE exhibited potent antioxidant activity by regulating the enzymes/proteins levels such as SOD, CAT, GPx, GR, HSP-70, Caspase-3, and Bcl-2. The pretreatment restored H2O2-induced cellular, nuclear, and mitochondrial morphologies as well as increased the expression of Brain derived nerve growth factor (BDNF). The anti-oxidant and anti-apoptotic potentials of the plant extract may account for its high content of phenolics, flavonoids, and other active principles. Taken together, our findings suggest that CRE might be developed as an agent for neurodegeneration prevention or therapy.  相似文献   

15.
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and –SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in –SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or –SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.  相似文献   

16.

The detrimental impact on the food chain due to the overuse of rotenone is partly responsible for alpha-synuclein (α-syn) mediated neurotoxicity. It is hypothesized that rotenone overdose leads to cytosolic proteopathy resulting in modulation of apoptosis and autophagic pathways. The aim of our study is to explore the neuroprotective role of quercetin, a beneficial polyphenol against rotenone-induced neurotoxicity in dopaminergic human SH-SY5Y cell lines. In our study we demonstrated the correlation of rotenone-induced neurotoxicity through elevation of intracellular reactive oxygen species (ROS) and imbalance in the mitochondrial membrane potential (MMP). Moreover, the morphological distortion of cell, condensation of nuclei, externalization of the inner phosphatidylserine, cleavage of caspase 3, and Poly ADP Ribose Polymerase (PARP) confirmed apoptosis. However, all these lethal effects were ameliorated by treatment of quercetin to the cells. On the other hand rotenone has a strong effect on autophagy which is a regulated degrading and recycling cellular process to remove dysfunctional proteins. Indeed, rotenone-mediated autophagy resulted in the enhancement of autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) expression. Furthermore, excess accumulation of acidic vesicles was detected in presence of rotenone. Lysosome associated membrane protein (LAMP-2A) is yet another crucial protein that recruits overexpressed or misfolded proteins into the lumen of lysosome to trigger autophagy. In all cases the impact of rotenone on the cells acquired significant protection through quercetin treatment. In the present work we therefore opine the prospects of quercetin as a therapeutic candidate against neurotoxicity.

  相似文献   

17.
Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H2O2 or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.  相似文献   

18.
Abstract: The effects of intracellularly generated H2O2 on cell viability, morphology, and biochemical markers of injury have been investigated in a clonal cell line of neuronal origin (140-3, mouse neuroblastoma X rat glioma) as a cell culture model for the role of oxidative stress in the longterm loss of neurons in the brain. The H2O2 was generated from the redox cycling of menadione, or by the oxidation of serotonin catalyzed by monoamine oxidase, to simulate the effect of amine neurotransmitter turnover. Incubation with menadione at concentrations as low as 10 γM for several hours resulted in significant losses of cell viability and altered morphology. Similar effects were evident in the presence of serotonin only after incubation overnight with concentrations > 1 mM. The cytotoxicity of either agent was potentiated by preincubation with specific inhibitors of two enzymes important to cellular antioxidant defenses, 3-amino-1,2,4-trazole for catalase and 1,3-bis(chloromethyl)-1-nitrosourea for glutathione reductase. Activity of another antioxidant enzyme of particular importance to antioxidant defenses in brain, the selenoprotein glutathione peroxidase, was stimulated fourfold by growth of cultures in the presence of sodium selenite as a source of active-site Se for the enzyme. The only effect of the selenite on other functionally coupled antioxidant enzymes was a decrease in activity of superoxide dismutase at concentrations >200 nM. The selenite substantially protected cells against oxidative stress induced by combinations of menadione, 3-amino-1,2,4-trazole, and 1,3-bis(chloromethyl)-1-nitrosourea, but was only marginally effective with serotonin as a source of oxidative stress. The monoamine oxidase inhibitor pargyline increased cell survival in the presence of serotonin, demonstrating the role of this enzyme in its cytotoxicity. DNA damage (single strand breaks), but not lipid peroxidation, correlated with the cytotoxic effects of menadione.  相似文献   

19.
Medicago sativa L. is a forage legume plant widely distributed in all continents. Six new triterpenoid saponins, Medicagosides A-F (16) and five known ones (711) were isolated from M. sativa. Their structures were determined via HRESIMS, 1D and 2D NMR analysis. Biologically, all the isolates displayed neuroprotective activities against H2O2-induced damage in SH-SY5Y cells. Among them, compounds 1, 35 and 10 exhibited striking neuroprotective activities at 100 μM, restoring cell viability range from 79.66% to 89.03%, relative to 79.46% (100 μM) of Trolox used as the positive control.  相似文献   

20.
Cheng  Chen  Zheng  Nan  Sun  Deyang  Fang  Weishuo  Zheng  Lingling  Song  Weihong  Huang  Jian 《Neurochemical research》2020,45(9):2113-2127
Neurochemical Research - The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer’s disease (AD). β-site amyloid...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号