首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sinha D  Maiti T 《Biometrics》2004,60(1):34-40
We consider modeling and Bayesian analysis for panel-count data when the termination time for each subject may depend on its history of the recurrent events. We propose a fully specified semiparametric model for the joint distribution of the recurrent events and the termination time. For this model, we provide a natural motivation, derive several novel properties, and develop a Bayesian analysis based on a Markov chain Monte Carlo algorithm. Comparisons are made to other existing models and methods for panel-count data. We demonstrate the usefulness of our new models and methodologies through the reanalysis of a data set from a clinical trial.  相似文献   

2.
A basic biophysical model for bursting neurons   总被引:8,自引:0,他引:8  
Presented here is a basic biophysical cell model for bursting, an extension of our previous model (Av-Ron et al. 1991) for excitability and oscillations. By changing a limited set of model parameters, one can describe different patterns of bursting behavior in terms of the burst cycle, the durations of oscillation and quiescence, and firing frequency.  相似文献   

3.
Insulin-secreting β-cells, located within the pancreatic islets of Langerhans, are excitable cells that produce regular bursts of action potentials when stimulated by glucose. This system has been the focus of mathematical investigation for two decades, spawning an array of mathematical models. Recently, a new class of models has been introduced called ‘phantom bursters’ [Bertram et al. (2000) Biophys. J. 79, 2880–2892], which accounts for the wide range of burst frequencies exhibited by islets via the interaction of more than one slow process. Here, we describe one implementation of the phantom bursting mechanism in which intracellular Ca2+ controls the oscillations through both direct and indirect negative feedback pathways. We show how the model dynamics can be understood through an extension of the fast/slow analysis that is typically employed for bursting oscillations. From this perspective, the model makes use of multiple degrees of freedom to generate the full range of bursting oscillations exhibited by β-cells. The model also accounts for a wide range of experimental phenomena, including the ubiquitous triphasic response to the step elevation of glucose and responses to perturbations of internal Ca2+ stores. Although it is not presently a complete model of all β-cell properties, it demonstrates the design principles that we anticipate will underlie future progress in β-cell modeling.  相似文献   

4.
A Hodgkin-Huxley model exhibiting bursting oscillations   总被引:2,自引:0,他引:2  
We investigate bursting behaviour generated in an electrophysiological model of pituitary corticotrophs. The active and silent phases of this mode of bursting are generated by moving between two stable oscillatory solutions. The bursting is indirectly driven by slow modulation of the endoplasmic reticulum Ca2+ concentration. The model exhibits different modes of bursting, and we investigate mode transitions and similar modes of bursting in other Hodgkin-Huxley models. Bifurcation analysis and the use of null-surfaces facilitate a geometric interpretation of the model bursting modes and action potential generation, respectively.  相似文献   

5.
In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach.  相似文献   

6.
In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach.  相似文献   

7.
Gonadotropin-releasing hormone (GnRH) neurons exhibit at least two intrinsic modes of action potential burst firing, referred to as parabolic and irregular bursting. Parabolic bursting is characterized by a slow wave in membrane potential that can underlie periodic clusters of action potentials with increased interspike interval at the beginning and at the end of each cluster. Irregular bursting is characterized by clusters of action potentials that are separated by varying durations of interburst intervals and a relatively stable baseline potential. Based on recent studies of isolated ionic currents, a stochastic Hodgkin-Huxley (HH)-like model for the GnRH neuron is developed to reproduce each mode of burst firing with an appropriate set of conductances. Model outcomes for bursting are in agreement with the experimental recordings in terms of interburst interval, interspike interval, active phase duration, and other quantitative properties specific to each mode of bursting. The model also shows similar outcomes in membrane potential to those seen experimentally when tetrodotoxin (TTX) is used to block action potentials during bursting, and when estradiol transitions cells exhibiting slow oscillations to irregular bursting mode in vitro. Based on the parameter values used to reproduce each mode of bursting, the model suggests that GnRH neurons can switch between the two through changes in the maximum conductance of certain ionic currents, notably the slow inward Ca2+ current I s, and the Ca2+ -activated K+ current I KCa. Bifurcation analysis of the model shows that both modes of bursting are similar from a dynamical systems perspective despite differences in burst characteristics.  相似文献   

8.
This paper presents work on parameter estimation methods for bursting neural models. In our approach we use both geometrical features specific to bursting, as well as general features such as periodic orbits and their bifurcations. We use the geometry underlying bursting to introduce defining equations for burst initiation and termination, and restrict the estimation algorithms to the space of bursting periodic orbits when trying to fit periodic burst data. These geometrical ideas are combined with automatic differentiation to accurately compute parameter sensitivities for the burst timing and period. In addition to being of inherent interest, these sensitivities are used in standard gradient-based optimization algorithms to fit model burst duration and period to data. As an application, we fit Butera et al.'s (Journal of Neurophysiology 81, 382-397, 1999) model of preB?tzinger complex neurons to empirical data both in control conditions and when the neuromodulator norepinephrine is added (Viemari and Ramirez, Journal of Neurophysiology 95, 2070-2082, 2006). The results suggest possible modulatory mechanisms in the preB?tzinger complex, including modulation of the persistent sodium current.  相似文献   

9.
Epileptiform discharges on an isolated cortex are explored using neural field theory. A neural field model of the isolated cortex is used that consists of three neural populations, excitatory, inhibitory, and excitatory bursting. Mechanisms by which an isolated cortex gives rise to seizure-like waveforms thought to underly pathological EEG waveforms on the deafferented cortex are explored. It is shown that the model reproduces similar time series and oscillatory frequencies for paroxysmal discharges when compared with physiological recordings both during acute and chronic deafferentation states. Furthermore, within our model ictal activity arises from perturbations to steady-states very close to the dynamical system’s instability boundary; hence, these are distinct from corticothalamic seizures observed in the model for the intact brain which involved limit-cycle dynamics. The results are applied to experiments in deafferented cats.  相似文献   

10.
This work proposes an optimal control approach for the termination of re-entry waves in cardiac electrophysiology. The control enters as an extracellular current density into the bidomain equations which are well established model equations in the literature to describe the electrical behavior of the cardiac tissue. The optimal control formulation is inspired, in part, by the dynamical systems behavior of the underlying system of differential equations. Existence of optimal controls is established and the optimality system is derived formally. The numerical realization is described in detail and numerical experiments, which demonstrate the capability of influencing and terminating reentry phenomena, are presented.  相似文献   

11.
In this paper a modular model of the GnRH neuron is presented. For the aim of simplicity, the currents corresponding to fast time scales and action potential generation are described by an impulsive system, while the slower currents and calcium dynamics are described by usual ordinary differential equations (ODEs). The model is able to reproduce the depolarizing afterpotentials, afterhyperpolarization, periodic bursting behavior and the corresponding calcium transients observed in the case of GnRH neurons.  相似文献   

12.
Summary Information about the bursting strength of animal cells is essential if the mechanisms of cell damage in bioreactors are to be understood, and if cell mechanical properties are ever to be related to cell structure and physiology. We have developed a novel cell compression technique that makes it possible to directly measure the bursting strength of single mammalian cells, and to infer information about cell mechanical properties. Offprint requests to: C. R. Thomas  相似文献   

13.
14.
C D Prescott  B Kleuvers  H U G?ringer 《Biochimie》1991,73(7-8):1121-1129
A series of site-directed mutations has been constructed in E coli 16S rRNA and shown to suppress UGA-dependent translational termination. With the exception of the C726 to G base change, all were constructed in helix 34. Characterization of these mutations is reviewed here and from these data and mRNA-rRNA base pairing model for the termination event is presented. The interaction functions via antiparallel base pairing between either 1 of the 2 UCA motifs in helix 34 and the complementary UGA stop codon on the message, thus forming a quasicontinuous A-type helical structure that is further stabilized by stacking enthalpy. Finally, rRNA motifs potentially required for UAA and UAG-dependent translational termination are discussed.  相似文献   

15.
16.
Dissection of a model for neuronal parabolic bursting   总被引:9,自引:0,他引:9  
We have obtained new insight into the mechanisms for bursting in a class of theoretical models. We study Plant's model [24] for Aplysia R-15 to illustrate our view of these so-called parabolic bursters, which are characterized by low spike frequency at the beginning and end of a burst. By identifying and analyzing the fast and slow processes we show how they interact mutually to generate spike activity and the slow wave which underlies the burst pattern. Our treatment is essentially the first step of a singular perturbation approach presented from a geometrical viewpoint and carried out numerically with AUTO [12]. We determine the solution sets (steady state and oscillatory) of the fast subsystem with the slow variables treated as parameters. These solutions form the slow manifold over which the slow dynamics then define a burst trajectory. During the silent phase of a burst, the solution trajectory lies approximately on the steady state branch of the slow manifold and during the active phase of spiking, the trajectory sweeps through the oscillation branch. The parabolic nature of bursting arises from the (degenerate) homoclinic transition between the oscillatory branch and the steady state branch. We show that, for some parameter values, the trajectory remains strictly on the steady state branch (to produce a resting steady state or a pure slow wave without spike activity) or strictly in the oscillatory branch (continuous spike activity without silent phases). Plant's model has two slow variables: a calcium conductance and the intracellular free calcium concentration, which activates a potassium conductance. We also show how bursting arises from an alternative mechanism in which calcium inactivates the calcium current and the potassium conductance is insensitive to calcium. These and other biophysical interpretations are discussed.  相似文献   

17.
The sudden and transient hypersynchrony of neuronal firing that characterizes epileptic seizures can be considered as the transitory stabilization of metastable states present within the dynamical repertoire of a neuronal network. Using an in vitro model of recurrent spontaneous seizures in the rat horizontal hippocampal slice preparation, we present an approach to characterize the dynamics of the transition to seizure, and to use this information to control the activity and avoid the occurrence of seizure-like events. The transition from the interictal activity (between seizures) to the seizure-like event is aborted by brief (20-50 s) low-frequency (0.5 Hz) periodic forcing perturbations, applied via an extracellular stimulating electrode to the mossy fibers, the axons of the dentate neurons that synapse onto the CA3 pyramidal cells. This perturbation results in the stabilization of an interictal-like low-frequency firing pattern in the hippocampal slice. The results derived from this work shed light on the dynamics of the transition to seizure and will further the development of algorithms that can be used in automated devices to stop seizure occurrence.  相似文献   

18.
Bursting is one of the fundamental rhythms that excitable cells can generate either in response to incoming stimuli or intrinsically. It has been a topic of intense research in computational biology for several decades. The classification of bursting oscillations in excitable systems has been the subject of active research since the early 1980s and is still ongoing. As a by-product, it establishes analytical and numerical foundations for studying complex temporal behaviors in multiple timescale models of cellular activity. In this review, we first present the seminal works of Rinzel and Izhikevich in classifying bursting patterns of excitable systems. We recall a complementary mathematical classification approach by Bertram and colleagues, and then by Golubitsky and colleagues, which, together with the Rinzel-Izhikevich proposals, provide the state-of-the-art foundations to these classifications. Beyond classical approaches, we review a recent bursting example that falls outside the previous classification systems. Generalizing this example leads us to propose an extended classification, which requires the analysis of both fast and slow subsystems of an underlying slow-fast model and allows the dissection of a larger class of bursters. Namely, we provide a general framework for bursting systems with both subthreshold and superthreshold oscillations. A new class of bursters with at least 2 slow variables is then added, which we denote folded-node bursters, to convey the idea that the bursts are initiated or annihilated via a folded-node singularity. Key to this mechanism are so-called canard or duck orbits, organizing the underpinning excitability structure. We describe the 2 main families of folded-node bursters, depending upon the phase (active/spiking or silent/nonspiking) of the bursting cycle during which folded-node dynamics occurs. We classify both families and give examples of minimal systems displaying these novel bursting patterns. Finally, we provide a biophysical example by reinterpreting a generic conductance-based episodic burster as a folded-node burster, showing that the associated framework can explain its subthreshold oscillations over a larger parameter region than the fast subsystem approach.  相似文献   

19.
We describe a novel PCR-based method that allows the generation of nested termination fragments by integrating both selective DNA amplification and directed chain termination into a single PCR reaction. These termination fragments can be examined for sequence variation in either denaturing or non-denaturing polyacrylamide gels. This method provides a one-step and highly effective approach for the detection of both insertions/deletions and single base pair substitutions in sequences up to 1 kb in length.  相似文献   

20.
Although the bursting patterns with spike undershoot are involved with the achievement of physiological or cognitive functions of brain with synaptic noise, noise induced-coherence resonance (CR) from resting state or subthreshold oscillations instead of bursting has been widely identified to play positive roles in information process. Instead, in the present paper, CR characterized by the increase firstly and then decease of peak value of power spectrum of spike trains is evoked from a bursting pattern with spike undershoot, which means that the minimal membrane potential within burst is lower than that of the subthreshold oscillations between bursts, while CR cannot be evoked from the bursting pattern without spike undershoot. With bifurcations and fast-slow variable dissection method, the bursting patterns with and without spike undershoot are classified into “Sub-Hopf/Fold” bursting and “Fold/Homoclinic” bursting, respectively. For the bursting with spike undershoot, the trajectory of the subthreshold oscillations is very close to that of the spikes within burst. Therefore, noise can induce more spikes from the subthreshold oscillations and modulate the bursting regularity, which leads to the appearance of CR. For the bursting pattern without spike undershoot, the trajectory of the quiescent state is not close to that of the spikes within burst, and noise cannot induce spikes from the quiescent state between bursts, which is cause for non-CR. The result provides a novel case of CR phenomenon and extends the scopes of CR concept, presents that noise can enhance rather than suppress information of the bursting patterns with spike undershoot, which are helpful for understanding the dynamics and the potential physiological or cognitive functions of the nerve fiber or brain neurons with such bursting patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号