首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   

2.
Respiration and calcification rate were estimated to quantify the effect of Zhikong scallop Chlamys farreri on marine CO2 system in Sanggou Bay, China. The C. farreri population in Sanggou Bay sequestered 78.06?±?5.76 g C m?2 y?1 for shell formation, while the CO2 fluxes due to calcification and respiration were 53.95?±?3.98 and 71.69?±?6.51 g C m?2 y?1, respectively. In order to eliminate the additional CO2 released from calcification and respiration process of C. farreri, Gracilaria lemaneiformis were introduced into the integrated system and its role was validated by in situ mesocosm methods. Eight mesocosms (1,000 L) were deployed over 42-h period and consisted of four treatments: seaweed-only, scallop-only (SP), seaweed integrated with scallop (SS), and control (C). The aqueous CO2 concentration and partial pressure of CO2 in SP treatments were significantly higher than the other three treatments (p?<?0.01), while there were no difference between SS treatments and C treatments (p?>?0.05). Furthermore, compared with the SP treatments, the presence of the G. lemaneiformis can keep the seawater pH stable. These findings suggest that seaweed and shellfish integrated aquaculture practice cannot only reduce dissolved inorganic carbon but also can alleviate ocean acidification.  相似文献   

3.
Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35?kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54?years, were transversely cut into slices of 10?mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35?kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy absorption capacity of irradiated bone rings apparently resulted from changes generated by irradiation within the plastic strain region.  相似文献   

4.
The net photosynthetic rate (P N), the sample room CO2 concentration (CO2S) and the intercellular CO2 concentration (C i) in response to PAR, of C3 (wheat and bean) and C4 (maize and three-colored amaranth) plants were measured. Results showed that photorespiration (R p) of wheat and bean could not occur at 2 % O2. At 2 % O2 and 0 μmol mol?1 CO2, P N can be used to estimate the rate of mitochondrial respiration in the light (R d). The R d decreased with increasing PAR, and ranged between 3.20 and 2.09 μmol CO2 m?2 s?1 in wheat. The trend was similar for bean (between 2.95 and 1.70 μmol CO2 m?2 s?1), maize (between 2.27 and 0.62 μmol CO2 m?2 s?1) and three-colored amaranth (between 1.37 and 0.49 μmol CO2 m?2 s?1). The widely observed phenomenon of R d being lower than R n can be attributed to refixation, rather than light inhibition. For all plants tested, CO2 recovery rates increased with increasing light intensity from 32 to 55 % (wheat), 29 to 59 % (bean), 54 to 87 % (maize) and 72 to 90 % (three-colored amaranth) at 50 and 2,000 μmol m?2 s?1, respectively.  相似文献   

5.
Defatting is an important procedure for the preparation of bone grafts because lipids in bone grafts strongly influence the osteointegration. Lipases have been widely used in different fields. However, study on the application to defatting process for bone grafts preparation has never been found so far. In this study, bone samples were treated respectively by lipase, NaHCO3/Na2CO3, acetone and deionized water. The lipids content of processed bone grafts was calculated in Soxhlet extractor method. Surface morphology of the bone grafts was observed under scanning electron microscope (SEM). DNA content of processed bone grafts was measured. Cytocompatibility was evaluated by co-culturing mouse preosteoblasts (MC3T3-E1) on defatted bone cubes. Proliferation rates of MC3T3-E1 were examined by cell counting kit-8 (CCK-8) assay. No statistically significant difference was found between lipids amount of bone processed by lipase (0.46 ± 0.16 %) and acetone (1.11 ± 0.13 %) (P > 0.05). Both of them were significantly lower than that in groups processed by Na2CO3/NaHCO3 (3.46 ± 0.69 %) and deionized water (8.88 ± 0.18 %) (P = 0.000). Only cell debris were discovered over the surface of bone processed by lipase or acetone, while lipid droplets were observed on bone processed by Na2CO3/NaHCO3 or water by SEM. The difference of DNA concentration between the bone processed by lipase (3.16 ± 0.81 ng/μl) and acetone (4.14 ± 0.40 ng/μl) is not statistically significant (P > 0.05). Both of them are significantly lower than that groups processed by Na2CO3/NaHCO3 (5.22 ± 0.38 ng/μl) and water (7.88 ± 0.55 ng/μl) (P < 0.05). MC3T3-E1 cells maintained their characteristic spreading on the trabecular surfaces of bone processed by lipase. There were no statistically significant differences among absorbance of lipase, acetone groups in CCK-8 assay. The application of lipase to bone tissue defatting appears to be a very promising technique for bone grafts preparation.  相似文献   

6.
In order to achieve recognition as environmentally friendly production, flue gases should be used as a CO2 source for growing the microalgae Chlorella sorokiniana when used for hydrogen production. Flue gases from a waste incinerator and from a silicomanganese smelter were used. Before testing the flue gases, the algae were grown in a laboratory at 0.04, 1.3, 5.9, and 11.0 % (v/v) pure CO2 gas mixed with fresh air. After 5 days of growth, the dry biomass per liter algal culture reached its maximum at 6.1 % CO2. A second experiment was conducted in the laboratory at 6.2 % CO2 at photon flux densities (PFD) of 100, 230, and 320 μmol photons m?2 s?1. After 4 days of growth, increasing the PFD increased the biomass production by 67 and 108 % at the two highest PFD levels, as compared with the lowest PFD. A bioreactor system containing nine daylight-exposed tubes and nine artificial light-exposed tubes was installed on the roof of the waste incinerator. The effect of undiluted flue gas (10.7 % CO2, 35.8 ppm NO x , and 38.6 ppm SO2), flue gas diluted with fresh air to give 4.2 % CO2 concentration, and 5.0 % pure CO2 gas was studied in daylight (21.4?±?9.6 mol photons m?2 day?1 PAR, day length 12.0 h) and at 135 μmol photons m?2 s?1 artificial light given 24 h day?1 (11.7?±?0.0 mol photons m?2 day?1 PAR). After 4 days’ growth, the biomass production was the same in the two flue gas concentrations and the 5 % pure CO2 gas control. The biomass production was also the same in daylight and artificial light, which meant that, in artificial light, the light use efficiency was about twice that of daylight. The starch concentration of the algae was unaffected by the light level and CO2 concentration in the laboratory experiments (2.5–4.0 % of the dry weight). The flue gas concentration had no effect on starch concentration, while the starch concentration increased from about 1.5 % to about 6.0 % when the light source changed from artificial light to daylight. The flue gas from the silicomanganese smelter was characterized by a high CO2 concentration (about 17 % v/v), low oxygen concentration (about 4 %), about 100 ppm NO x , and 1 ppm SO2. The biomass production using flue gas significantly increased as compared with about 5 % pure CO2 gas, which was similar to the biomass produced at a CO2 concentration of 10–20 % mixed with N2. Thus, the enhanced biomass production seemed to be related to the low oxygen concentration rather than to the very high CO2 concentration.  相似文献   

7.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

8.
A new strain of cyanobacteria was isolated from seawater samples collected near Jimo hot springs, Qingdao, China, and was identified as Cyanobacterium aponinum by 16S rDNA analysis. This study examined the effects of temperature, pH, light quality and high CO2 concentration on the growth of the cyanobacteria. Results showed that the strain exhibited a higher growth rate (about 168.4 mg L?1 day?1) at 35 °C than other temperatures (surviving at up to 50 °C) and a wide growth tolerance to acidic stress (pH 3.0 to 4.0) resulting from either H2SO4 or HNO3. The four light qualities, ranked by greatest to least biomass effect, were as follows: LED white light (LW) > LED red light (LR) > fluorescent white light (FW) > LED blue light (LB), achieving a higher lighting effect at a LW light intensity (60 μmol photons m?2 s?1) lower than other light qualities, which implied less energy consumption therewith. This strain demonstrates excellent CO2 tolerance at least 10% CO2 with the highest productivity in biomass (about 337.8 mg L?1 day?1) measured at 1% CO2 level. Results indicate that this strain is a promising candidate for use in biofixation of CO2 from flue gases emitted by thermoelectric plants.  相似文献   

9.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

10.
The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L?1) and productivity (0.118 g L?1 day?1) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L?1 day?1. The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L?1 day?1. In series reactors, average CO2 uptake is 0.13 g L?1 day?1 per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.  相似文献   

11.
We measured CO2 concentration and determined evasion rate and piston velocity across the water–air interface in flow-through chambers at eight stations along two 20 km long streams in agricultural landscapes in Zealand, Denmark. Both streams were 9–18-fold supersaturated in CO2 with daily means of 240 and 340 μM in January–March and 130 and 180 μM in June–August. Annual CO2 medians were 212 μM in six other streams and 460 μM in four groundwater wells, while seven lakes were weakly supersaturated (29 μM). Air concentrations immediately above stream surfaces were close to mean atmospheric conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h?1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m?2 day?1) where CO2-rich soil water entered fast stream flow, while rates were tenfold lower (25–100 mmol m?2 day?1) in slow-flowing lower reaches. CO2 evasion mainly derived from the input of CO2 in soil water. The variability of CO2 evasion along the two lowland streams covered much of the range in sub-Arctic and temperate streams reported previously. In budgets for the two stream catchments, loss of carbon from soils via the hydrological cycle was substantial (3.2–5.7 mmol m?2 day?1) and dominated by CO2 consumed to form HCO3 ? by mineral dissolution (69–76%) and export of organic carbon (15–23%) relative to dissolved CO2 export (7–9%).  相似文献   

12.
The cultivation of Scenedesmus armatus was carried out under outdoor Thailand climate conditions. The highest actual growth rate occurred at around 9:00 a.m. to 3:00 p.m., with a wide pH range of 6.4 to 11. The supply of CO2 had slight influence on growth characteristics but did exert some observable effects on nutritional accumulations. Adding CO2 from 2 to 15% by volume in the aeration (0.2 vvm) caused an increase in lipid and protein from 19.8 to 25.6 and 37.8 to 48.2% w/w, respectively, whereas carbohydrate decreased from 42.5 to 26.2% w/w. Scenedesmus armatus cultivated with 2% CO2-enriched air provided the highest the average of the average biomass productivity of 91.25 mg L?1 d?1, which corresponded to a CO2 fixation of 165 mg CO2 L?1 d?1 with the average lipid, protein, and carbohydrate productivities of 22.24, 38.34, and 30.67 mg L?1 d?1.  相似文献   

13.
Titanium dioxide (TiO2) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO2 nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO2-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO2?) and superoxide radical anions (O2?). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO2? radicals. The latter may then react with cellular oxygen to form O2? and genotoxic hydrogen peroxide (H2O2).  相似文献   

14.
The effect of calcium, copper ions and salicylic acid (SA) amendment on the incidence of basal stem rot and activity of secondary metabolites in oil palm seedlings were investigated in glasshouse study. Disease incidence (DI) in positive control (T8) was 75% at nine months after inoculation (9 MAI). However, weekly pre-immunisation with Ca2+?+?Cu2+?+?SA prior to inoculation significantly suppressed DI and delayed disease onset as noted in T7. In the present study, the lowest %DI was observed in T7 (15%) followed by T1, T5, T6, T3, T4 and T2. The Ca2+, Cu2+ and SA amendments were resulted in earlier and higher accumulation of plant secondary metabolites as noted in leaves, stems and root tissues in response to invasion by Ganoderma boninense. High total phenolic content concentration was detected in T7 (leaf: 233.38 ± 0.12 mg/g; stem: 132.78 ± 0.04 mg/g and root: 86.98 ± 0.28 mg/g). Similar trend was obtained in peroxidase activity, total lignin content and hydrogen peroxide scavenging activity. These results suggested that it could be due to the accumulation of phenolics, peroxidase activities, lignin content and hydrogen peroxide scavenging activities in oil palm seedling tissues which might have collectively contributed to induce resistance against G. boninense.  相似文献   

15.
Extensive interfluvial wetlands occur in the upper Negro River basin (Brazil) and contain a mosaic of vegetation dominated by emergent grasses and sedges with patches of shrubs and palms. To characterize the release of carbon dioxide and methane from these habitats, diffusive and ebullitive emissions and transport through plant aerenchyma were measured monthly during 2005 in permanently and seasonally flooded areas. CO2 emissions averaged 2193 mg C m?2 day?1. Methane was consumed in unflooded environments and emitted in flooded environments with average values of ?4.8 and 60 mg C m?2 day?1, respectively. Bubbles were emitted primarily during falling water periods when hydrostatic pressure at the sediment?Cwater interface declined. CO2 and CH4 emissions increased when dissolved O2 decreased and vegetation was more abundant. Total area and seasonally varying flooded areas for two wetlands, located north and south of the Negro River, were determined through analysis of synthetic aperture radar and optical remotely sensed data. The combined areas of these two wetlands (3000 km2) emitted 1147 Gg C year?1 as CO2 and 31 Gg C year?1 as CH4. If these rates are extrapolated to the area occupied by hydromorphic soils in the upper Negro basin, 63 Tg C year?1 of CO2 and 1.7 Tg C year?1 as CH4 are estimated as the regional evasion to the atmosphere.  相似文献   

16.
The present investigation entails the immobilisation and characterisation of Escherichia coli MO1-derived carbonic anhydrase (CA) and its influence on the transformation of CO2 to CaCO3. CA was purified from MO1 using a combination of Sephadex G-75 and DEAE cellulose column chromatography, resulting in 4.64-fold purification. The purified CA was immobilised in chitosan-alginate polyelectrolyte complex (C-A PEC) with an immobilisation potential of 94.5 %. Both the immobilised and free forms of the enzyme were most active and stable at pH 8.2 and at 37 °C. The K m and V max of the immobilised enzyme were found to be 19.12 mM and 416.66 μmol min?1 mg?1, respectively; whereas, the K m and V max of free enzyme were 18.26 mM and 434.78 μmol min?1 mg?1, respectively. The presence of metal ions such as Cu2+, Fe2+, and Mg2+ stimulated the enzyme activity. Immobilised CA showed higher storage stability and maintained its catalytic efficiency after repeated operational cycles. Furthermore, both forms of the enzyme were tested for targeted application of the carbonation reaction to convert CO2 to CaCO3. The amounts of CaCO3 precipitated over free and immobilised CA were 267 and 253 mg/mg of enzyme, respectively. The results of this study show that immobilised CA in chitosan-alginate beads can be useful for CO2 sequestration by the biomimetic route.  相似文献   

17.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

18.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

19.
The effects of organic enrichment on sediment biogeochemistry was studied in diffusion controlled sediment mesocosms, where labile organic matter (OM) (fish feed) pulses were added once a week to the sediment surface. Two types of sediments, differing mainly in content of reactive Fe, were used. The aim of this experiment was two-fold, (1) to evaluate the importance of Fe-driven sulfide buffering for sulfide accumulation in surface enriched sediments, and (2) to estimate the diagenetic capacity for degradation of labile OM near the sediment surface. The simulated OM loading rate of 375 mmol C m?2 day?1 led to a 5–6 times increase in CO2-production and a 4–5 times increase in O2-uptake. Sulfate reduction estimated by radiotracer experiments and CO2-release was 105–131 mmol m?2 day?1, but accumulation of porewater sulfide was low in both sediment types. Instead 99% of sulfide was oxidized with O2 at the sediment water interface in the low Fe treatment, whereas 46% of produced sulfide precipitated as Fe-S compound in the high Fe treatment resulting in significantly lower O2-uptake. Furthermore, the accumulation of up to 30% of added OM by the end of the experiment indicated a saturation of the heterotrophic microbial communities in the upper enriched surface layer. These results suggest a maximum diagenetic capacity for OM degradation in the range of ~25 μmol C cm?3 day?1 or 260 mmol m?2 day?1 for the present sediment types.  相似文献   

20.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号