首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work describes a new technique for the identification of functional connectivity between neural firing patterns. The simultaneous singleunit recordings obtained from over 50 individual cells in the dragonfly mesothoracic ganglion during three consecutive behavioral states: pre-flight, flight and postflight were evaluated. Each individual spike train was converted into a synthesized analog gradient designed to capture crucial physiological characteristics of the cell from which the spike train emanated. Estimates of network functional connectivity were calculated using correlations between analog gradient spike trains for all possible cell pairings. Both functional excitation and inhibition could be detected in the correlations. The detection of functional connectivity was relatively independent of cell firing rate. More detailed analyses indicated the existence of cellular firing histories and connectivity patterns during flight that strongly resembled the characteristics of a bi-stable oscillator. Such an oscillator, hypothetically, could drive the elevator and depressor motor neuron firing paterns that support wing kinematics. There was no evidence for the functional existence of such an oscillator within either preor post-flight spike records. The detected spatiotemporal patterns of neural activity are hypothesized to be consistent with neural command sequences that the dragonfly might use to control flight. The demonstrated capability to define short-time scale functional relationships between spike trains obtained from dragonfly ganglia should have valuable applications to the comparative study of neural information processing strategies in a variety of other neural systems.  相似文献   

2.
The relationships between neural activity at the single-cell and the population levels are of central importance for understanding neural codes. In many sensory systems, collective behaviors in large cell groups can be described by pairwise spike correlations. Here, we test whether in a highly specialized premotor system of songbirds, pairwise spike correlations themselves can be seen as a simple corollary of an underlying random process. We test hypotheses on connectivity and network dynamics in the motor pathway of zebra finches using a high-level population model that is independent of detailed single-neuron properties. We assume that neural population activity evolves along a finite set of states during singing, and that during sleep population activity randomly switches back and forth between song states and a single resting state. Individual spike trains are generated by associating with each of the population states a particular firing mode, such as bursting or tonic firing. With an overall modification of one or two simple control parameters, the Markov model is able to reproduce observed firing statistics and spike correlations in different neuron types and behavioral states. Our results suggest that song- and sleep-related firing patterns are identical on short time scales and result from random sampling of a unique underlying theme. The efficiency of our population model may apply also to other neural systems in which population hypotheses can be tested on recordings from small neuron groups.  相似文献   

3.
Estimating sample averages and sample variability is important in analyzing neural spike trains data in computational neuroscience. Current approaches have focused on advancing the use of parametric or semiparametric probability models of the underlying stochastic process, where the probabilistic distribution is characterized at each time point with basic statistics such as mean and variance. To directly capture and analyze the average and variability in the observation space of the spike trains, we focus on a data-driven approach where statistics are defined and computed in a function space in which the spike trains are viewed as individual points. Based on the definition of a “Euclidean” metric, a recent paper introduced the notion of the mean of a set of spike trains and developed an efficient algorithm to compute it under some restrictive conditions. Here we extend this study by: (1) developing a novel algorithm for mean computation that is quite general, and (2) introducing a notion of covariance of a set of spike trains. Specifically, we estimate the covariance matrix using the geometry of the warping functions that map the mean spike train to each of the spike trains in the dataset. Results from simulations as well as a neural recording in primate motor cortex indicate that the proposed mean and covariance successfully capture the observed variability in spike trains. In addition, a “Gaussian-type” probability model (defined using the estimated mean and covariance) reasonably characterizes the distribution of the spike trains and achieves a desirable performance in the classification of the spike trains.  相似文献   

4.
We introduce a stochastic spike train analysis method called joint interspike interval difference (JISID) analysis. By design, this method detects changes in firing interspike intervals (ISIs), called local trends, within a 4-spike pattern in a spike train. This analysis classifies 4-spike patterns that have similar incremental changes. It characterizes the higher-order serial dependence in spike firing relative to changes in the firing history. Mathematically, this spike train analysis describes the statistical joint distribution of consecutive changes in ISIs, from which the serial dependence of the changes in higher-order intervals can be determined. It is similar to the joint interspike interval (JISI) analysis, except that the joint distribution of consecutive ISI differences (ISIDs) is quantified. The graphical location of points in the JISID scatter plot reveals the local trends in firing (i.e., monotonically increasing, monotonically decreasing, or transitional firing). The trajectory of these points in the serial-JISID plot traces the time evolution of these trends represented by a 5-spike pattern, while points in the JISID scatter plot represent trends of a 4-spike pattern. We provide complete theoretical interpretations of the JISID analysis. We also demonstrate that this method indeed identifies firing trends in both simulated spike trains and spike trains recorded from cultured neurons. Received: 13 May 1997 / Accepted in revised form: 9 December 1998  相似文献   

5.
Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.  相似文献   

6.
The intervals between nerve impulses can change substantially during propagation because of conduction velocity aftereffects of previous impulse activity. Effects of such changes on interval histograms and on statistical parameters of spike trains were evaluated for Poisson spike trains and for trains generated by a clock with added random delays. The distribution of short intervals was significantly changed during propagation for these spike trains. Substantial changes in serial correlation coefficients were found in trains with certain initial interval distributions. The relevance of these effects to neural coding is discussed.  相似文献   

7.
提出了神经放电序列模式识别的一种新方法。首先,把放电序列用阶梯状的响应函数来表示,然后定义了其一阶、二阶形式导数以及形式积分。这三个特征量均有着不同的几何和物理意义,因此采用这三个特征量来刻画神经放电序列的模式,就可以较全面地表示其特征。对神经放电序列的重构也表明通过这几个特征量可以很好地反映序列中所包含的信息。作为应用例子,这种量化方法用来研究冷热感受器模型所产生的放电模式,结果表明它能够识别在不同温度条件下的放电模式。  相似文献   

8.
Morphological reconstructions of axon segments reveal the abundance of geometrical ultrastructures that can dramatically affect the propagation of Action Potentials (AP). Moreover, deformations and swellings in axons resulting from brain traumas are associated to many neural dysfunctions and disorders. Our aim is to develop a computational framework to distinguish between geometrical enlargements that lead to minor changes in propagation from those that result in critical phenomenon such as reflection or blockage of the original traveling spike. We use a few geometrical parameters to model a prototypical shaft enlargement and explore the parameter space characterizing all possible propagation regimes and dynamics in an unmylienated AP model. Contrary to earlier notions that large diameter increases mostly lead to blocking, we demonstrate transmission is stable provided the geometrical changes occur in a slow manner. Our method also identifies a narrow range of parameters leading to a reflection regime. The distinction between these three regimes can be evaluated by a simple function of the geometrical parameters inferred through numerical simulations. We suggest that evaluating this function along axon segments can detect regions most susceptible to (i) transmission failure due to perturbations, (ii) structural plasticity, (iii) critical swellings caused by brain traumas and/or (iv) neurological disorders associated with the break down of spike train propagation.  相似文献   

9.
A train of action potentials (a spike train) can carry information in both the average firing rate and the pattern of spikes in the train. But can such a spike-pattern code be supported by cortical circuits? Neurons in vitro produce a spike pattern in response to the injection of a fluctuating current. However, cortical neurons in vivo are modulated by local oscillatory neuronal activity and by top-down inputs. In a cortical circuit, precise spike patterns thus reflect the interaction between internally generated activity and sensory information encoded by input spike trains. We review the evidence for precise and reliable spike timing in the cortex and discuss its computational role.  相似文献   

10.
Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.  相似文献   

11.
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.  相似文献   

12.
Statistical inferences are essentially important in analyzing neural spike trains in computational neuroscience. Current approaches have followed a general inference paradigm where a parametric probability model is often used to characterize the temporal evolution of the underlying stochastic processes. To directly capture the overall variability and distribution in the space of the spike trains, we focus on a data-driven approach where statistics are defined and computed in the function space in which spike trains are viewed as individual points. To this end, we at first develop a parametrized family of metrics that takes into account different warpings in the time domain and generalizes several currently used spike train distances. These new metrics are essentially penalized L p norms, involving appropriate functions of spike trains, with penalties associated with time-warping. The notions of means and variances of spike trains are then defined based on the new metrics when p = 2 (corresponding to the “Euclidean distance”). Using some restrictive conditions, we present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains with arbitrary numbers of spikes. The proposed metrics as well as the mean spike trains are demonstrated using simulations as well as an experimental recording from the motor cortex. It is found that all these methods achieve desirable performance and the results support the success of this novel framework.  相似文献   

13.
Estimation of the power spectrum is a common method for identifying oscillatory changes in neuronal activity. However, the stochastic nature of neuronal activity leads to severe biases in the estimation of these oscillations in single unit spike trains. Different biological and experimental factors cause the spike train to differentially reflect its underlying oscillatory rate function. We analyzed the effect of factors, such as the mean firing rate and the recording duration, on the detectability of oscillations and their significance, and tested these theoretical results on experimental data recorded in Parkinsonian non-human primates. The effect of these factors is dramatic, such that in some conditions, the detection of existing oscillations is impossible. Moreover, these biases impede the comparison of oscillations across brain regions, neuronal types, behavioral states and separate recordings with different underlying parameters, and lead inevitably to a gross misinterpretation of experimental results. We introduce a novel objective measure, the "modulation index", which overcomes these biases, and enables reliable detection of oscillations from spike trains and a direct estimation of the oscillation magnitude. The modulation index detects a high percentage of oscillations over a wide range of parameters, compared to classical spectral analysis methods, and enables an unbiased comparison between spike trains recorded from different neurons and using different experimental protocols.  相似文献   

14.
Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons’ burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center–surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.  相似文献   

15.
Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.  相似文献   

16.
In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.  相似文献   

17.
Correlation between spike trains or neurons sometimes indicates certain neural coding rules in the visual system. In this paper, the relationship between spike timing correlation and pattern correlation is discussed, and their ability to represent stimulus features is compared to examine their coding strategies not only in individual neurons but also in population. Two kinds of stimuli, natural movies and checkerboard, are used to arouse firing activities in chicken retinal ganglion cells. The spike timing correlation and pattern correlation are calculated by cross-correlation function and Lempel–Ziv distance respectively. According to the correlation values, it is demonstrated that spike trains with similar spike patterns are not necessarily concerted in firing time. Moreover, spike pattern correlation values between individual neurons’ responses reflect the difference of natural movies and checkerboard; neurons cooperate with each other with higher pattern correlation values which represent spatiotemporal correlations during response to natural movies. Spike timing does not reflect stimulus features as obvious as spike patterns, caused by their particular coding properties or physiological foundation. As a result, separating the pattern correlation out of traditional timing correlation concept uncover additional insight in neural coding.  相似文献   

18.
19.
Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.  相似文献   

20.
Based on physiological evidence for multiple firing zones in the dendritic arborizations of cerebellar Purkinje cells, a superposition model is proposed for spike triggering in these cells. Spike trains from 10 Purkinje cells were analyzed in terms of independence of interspike intervals and the properties of their variance-time curves. The results of this analysis were found consistent with the hypothesis that the spike train of a cerebellar Purkinje cell is the pooled output of a relatively large number of independent component processes. Simplifying assumptions as to the statistical nature of these processes lead to a very rough estimate of the number of firing zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号